Full List of Publications
Conferences
- Basold, H., & Ralaivaosaona, T. (2023). Composition and Recursion for Causal Structures. In P. Baldan & V. de Paiva (Eds.), Proc. of CALCO 2023 (Vol. 270, pp. 18:1–18:17). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. [doi] [pdf]
- Keizer, A. C., Basold, H., & Pérez, J. A. (2021). Session Coalgebras: A Coalgebraic View on Session Types and Communication Protocols. Proceedings of 30th European Symposium on Programming, ESOP 2021, 375–403. [doi] [pdf]
- Komendantskaya, E., Rozplokhas, D., & Basold, H. (2020). The New Normal: We Cannot Eliminate Cuts in Coinductive Calculi, But We Can Explore Them. Theory Pract. Log. Program., 20(6), 990–1005. [doi]
- Basold, H. (2019). Coinduction in Flow: The Later Modality in Fibrations. In M. Roggenbach & A. Sokolova (Eds.), CALCO’19 (Vol. 139, pp. 8:1–8:22). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. [doi] [pdf]
- Basold, H., Komendantskaya, E., & Li, Y. (2019). Coinduction in Uniform: Foundations for Corecursive Proof Search with Horn Clauses. ESOP’19, 11423, 783–813. [doi] [pdf]
- Basold, H., Pous, D., & Rot, J. (2017). Monoidal Company for Accessible Functors. CALCO 2017, 72. [doi] [pdf]
- Basold, H., & Geuvers, H. (2016). Type Theory Based on Dependent Inductive and Coinductive Types. Proceedings of LICS ’16, 327–336. [doi] [pdf]
- Basold, H. (2015). Dependent Inductive and Coinductive Types Are Fibrational Dialgebras. In R. Matthes & M. Mio (Eds.), Proceedings of FICS ’15 (Vol. 191, pp. 3–17). Open Publishing Association. [doi] [pdf]
- Basold, H., Hansen, H. H., Pin, J.-É., & Rutten, J. (2015). Newton Series, Coinductively. Proceedings of ICTAC ’15, 91–109. [doi] [pdf]
- Basold, H., Günther, H., Huhn, M., & Milius, S. (2014). An Open Alternative for SMT-Based Verification of Scade Models. Proceedings of Formal Methods for Industrial Critical Systems, FMICS 2014, 124–139. [doi] [pdf]
Journals
- Basold, H., Cockx, J., & Ghilezan, S. (Eds.). (2022). 27th International Conference on Types for Proofs and Programs, TYPES 2021, June 14-18, 2021, Leiden, The Netherlands (Virtual Conference) (Vol. 239). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. [doi] [pdf]
- Keizer, A. C., Basold, H., & Pérez, J. A. (2022). Session Coalgebras: A Coalgebraic View on Session Types and Communication Protocols. ACM Trans. Program. Lang. Syst., 44(3). [doi] [pdf]
- Basold, H., & Hansen, H. H. (2019). Well-Definedness and Observational Equivalence for Inductive-Coinductive Programs. Journal of Logic and Computation, 29(4), 419–468. [doi] [pdf]
- Basold, H., & Hansen, H. H. (2019). Well-Definedness and Observational Equivalence for Inductive-Coinductive Programs. J. Log. Comput., 29(4), 419–468. [doi] [pdf]
- Basold, H., Hansen, H. H., Pin, J.-É., & Rutten, J. (2019). Newton Series, Coinductively: A Comparative Study of Composition. Mathematical Structures in Computer Science, 29(1), 38–66. [doi] [pdf]
- Basold, H., Geuvers, H., & van der Weide, N. (2017). Higher Inductive Types in Programming. Journal of Universal Computer Science, David Turner’s Festschrift – Functional Programming: Past, Present, and Future. [pdf]
- Basold, H., & Geuvers, H. (2016). Type Theory Based on Dependent Inductive and Coinductive Types. CoRR, abs/1605.02206. [pdf]
- Basold, H., Bonsangue, M. M., Hansen, H. H., & Rutten, J. (2014). (Co)Algebraic Characterizations of Signal Flow Graphs. In F. van Breugel, E. Kashefi, C. Palamidessi, & J. Rutten (Eds.), Horizons of the Mind. A Tribute to Prakash Panangaden - Essays Dedicated to Prakash Panangaden on the Occasion of His 60th Birthday (Vol. 8464, pp. 124–145). Springer. [doi] [pdf]
Pre-Prints
- Villoria, A., Basold, H., & Laarman, A. (2023). Enriching Diagrams with Algebraic Operations (Number arXiv:2310.11288). arXiv. [doi]
- Basold, H., Baronner, T., & Hablicsek, M. (2023). Finitely Presentable Higher-Dimensional Automata and the Irrationality of Process Replication (Number 2305.06428). arXiv. [pdf]
- Basold, H., Bruin, P., & Lawson, D. (2023). The Directed Van Kampen Theorem in Lean (Number 2312.06506). arXiv. [doi]
- Basold, H., Ralaivaosaona, T., & van Starkenburg, B. (2023). Sheaves for Interacting Computational Effects. [pdf]
- Castañeda, A., Moses, Y., Schmid, U., & van Ditmarsch, H. (2023). Dagstuhl Seminar 23272: Epistemic and Topological Reasoning in Distributed Systems. [pdf]
- Keizer, A. C., Basold, H., & Pérez, J. A. (2020). Session Coalgebras: A Coalgebraic View on Session Types and Communication Protocols. CoRR, abs/2011.05712. [pdf]
- Komendantskaya, E., Rozplokhas, D., & Basold, H. (2020). The New Normal: We Cannot Eliminate Cuts in Coinductive Calculi, But We Can Explore Them. CoRR, abs/2008.03714. [pdf]
- Basold, H. (2018). Breaking the Loop: Recursive Proofs for Coinductive Predicates in Fibrations. ArXiv e-Prints. [pdf]
Theses
- Basold, H. (2018). Mixed Inductive-Coinductive Reasoning: Types, Programs and Logic [PhD Thesis, Radboud University]. [pdf]
- Basold, H. (2012). Transformation von Scade-Modellen zur SMT-basierten Verifikation [Master’s Thesis, TU Braunschweig]. [pdf]
- Basold, H. (2010). Parallelism Investigation for Elliptic Curve Key Exchange [Bachelor’s Thesis, TU Braunschweig]. [pdf]
Abstracts
- Basold, H., & Otten, D. (2021). M-Types and Bisimulation. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES). [pdf]
- Basold, H., & Veltri, N. (2020). A Type-Theoretic Potpourri: Towards Final Coalgebras of Accessible Functors. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES).
- Basold, H., van der Weide, N., & Veltri, N. (2019). Free Algebraic Theories as Higher Inductive Types. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES). [pdf]
- Basold, H. (2018, June). The Later Modality in Fibrations. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES).
- Basold, H. (2018, April). Recursive Proofs for Coinductive Predicates in Fibrations. CMCS Short Contributions.
- Basold, H., & Komendantskaya, E. (2016, November). Models of Inductive-Coinductive Logic Programs. Pre-Proceedings of the Workshop on Coalgebra, Horn Clause Logic Programming and Types (CoALP-Ty16). [pdf]
- Basold, H., & Geuvers, H. (2016, May). Type Theory Based on Dependent Inductive and Coinductive Types. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES). [doi] [pdf]
- Basold, H., & Geuvers, H. (2015, May). Dependent Inductive and Coinductive Types Through Dialgebras in Fibrations. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES). [pdf]
- Basold, H., & Geuvers, H. (2015, May). Dialgebra-Inspired Syntax for Dependent Inductive and Coinductive Types. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES). [pdf]
- Basold, H., H. Hansen, H., & Rutten, J. (2014). A Note on Typed Behavioural Differential Equations. CMCS Short Contributions. [pdf]
- Basold, H., & Hansen, H. H. (2014). Observational Equivalence for Behavioural Differential Equations. Extendend Abstracts for the Workshop on Proof, Structures and Computation. [pdf]
- Basold, H., Bonsangue, M., & Rutten, J. (2013). Algebraic Characterisations of Signal Flow Graphs. CALCO Early Ideas. [pdf]