Henning Basold

Full List of Publications

Conferences

  1. Basold, H., & Ralaivaosaona, T. (2023). Composition and Recursion for Causal Structures. In P. Baldan & V. de Paiva (Eds.), Proc. of CALCO 2023 (Vol. 270, pp. 18:1–18:17). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. [doi] [pdf]
  2. Keizer, A. C., Basold, H., & Pérez, J. A. (2021). Session Coalgebras: A Coalgebraic View on Session Types and Communication Protocols. Proceedings of 30th European Symposium on Programming, ESOP 2021, 375–403. [doi] [pdf]
  3. Komendantskaya, E., Rozplokhas, D., & Basold, H. (2020). The New Normal: We Cannot Eliminate Cuts in Coinductive Calculi, But We Can Explore Them. Theory Pract. Log. Program., 20(6), 990–1005. [doi]
  4. Basold, H. (2019). Coinduction in Flow: The Later Modality in Fibrations. In M. Roggenbach & A. Sokolova (Eds.), CALCO’19 (Vol. 139, pp. 8:1–8:22). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. [doi] [pdf]
  5. Basold, H., Komendantskaya, E., & Li, Y. (2019). Coinduction in Uniform: Foundations for Corecursive Proof Search with Horn Clauses. ESOP’19, 11423, 783–813. [doi] [pdf]
  6. Basold, H., Pous, D., & Rot, J. (2017). Monoidal Company for Accessible Functors. CALCO 2017, 72. [doi] [pdf]
  7. Basold, H., & Geuvers, H. (2016). Type Theory Based on Dependent Inductive and Coinductive Types. Proceedings of LICS ’16, 327–336. [doi] [pdf]
  8. Basold, H. (2015). Dependent Inductive and Coinductive Types Are Fibrational Dialgebras. In R. Matthes & M. Mio (Eds.), Proceedings of FICS ’15 (Vol. 191, pp. 3–17). Open Publishing Association. [doi] [pdf]
  9. Basold, H., Hansen, H. H., Pin, J.-É., & Rutten, J. (2015). Newton Series, Coinductively. Proceedings of ICTAC ’15, 91–109. [doi] [pdf]
  10. Basold, H., Günther, H., Huhn, M., & Milius, S. (2014). An Open Alternative for SMT-Based Verification of Scade Models. Proceedings of Formal Methods for Industrial Critical Systems, FMICS 2014, 124–139. [doi] [pdf]

Journals

  1. Basold, H., Cockx, J., & Ghilezan, S. (Eds.). (2022). 27th International Conference on Types for Proofs and Programs, TYPES 2021, June 14-18, 2021, Leiden, The Netherlands (Virtual Conference) (Vol. 239). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. [doi] [pdf]
  2. Keizer, A. C., Basold, H., & Pérez, J. A. (2022). Session Coalgebras: A Coalgebraic View on Session Types and Communication Protocols. ACM Trans. Program. Lang. Syst., 44(3). [doi] [pdf]
  3. Basold, H., & Hansen, H. H. (2019). Well-Definedness and Observational Equivalence for Inductive-Coinductive Programs. Journal of Logic and Computation, 29(4), 419–468. [doi] [pdf]
  4. Basold, H., & Hansen, H. H. (2019). Well-Definedness and Observational Equivalence for Inductive-Coinductive Programs. J. Log. Comput., 29(4), 419–468. [doi] [pdf]
  5. Basold, H., Hansen, H. H., Pin, J.-É., & Rutten, J. (2019). Newton Series, Coinductively: A Comparative Study of Composition. Mathematical Structures in Computer Science, 29(1), 38–66. [doi] [pdf]
  6. Basold, H., Geuvers, H., & van der Weide, N. (2017). Higher Inductive Types in Programming. Journal of Universal Computer Science, David Turner’s Festschrift – Functional Programming: Past, Present, and Future. [pdf]
  7. Basold, H., & Geuvers, H. (2016). Type Theory Based on Dependent Inductive and Coinductive Types. CoRR, abs/1605.02206. [pdf]
  8. Basold, H., Bonsangue, M. M., Hansen, H. H., & Rutten, J. (2014). (Co)Algebraic Characterizations of Signal Flow Graphs. In F. van Breugel, E. Kashefi, C. Palamidessi, & J. Rutten (Eds.), Horizons of the Mind. A Tribute to Prakash Panangaden - Essays Dedicated to Prakash Panangaden on the Occasion of His 60th Birthday (Vol. 8464, pp. 124–145). Springer. [doi] [pdf]

Pre-Prints

  1. Villoria, A., Basold, H., & Laarman, A. (2023). Enriching Diagrams with Algebraic Operations (Number arXiv:2310.11288). arXiv. [doi]
  2. Basold, H., Baronner, T., & Hablicsek, M. (2023). Finitely Presentable Higher-Dimensional Automata and the Irrationality of Process Replication (Number 2305.06428). arXiv. [pdf]
  3. Basold, H., Bruin, P., & Lawson, D. (2023). The Directed Van Kampen Theorem in Lean (Number 2312.06506). arXiv. [doi]
  4. Basold, H., Ralaivaosaona, T., & van Starkenburg, B. (2023). Sheaves for Interacting Computational Effects. [pdf]
  5. Castañeda, A., Moses, Y., Schmid, U., & van Ditmarsch, H. (2023). Dagstuhl Seminar 23272: Epistemic and Topological Reasoning in Distributed Systems. [pdf]
  6. Keizer, A. C., Basold, H., & Pérez, J. A. (2020). Session Coalgebras: A Coalgebraic View on Session Types and Communication Protocols. CoRR, abs/2011.05712. [pdf]
  7. Komendantskaya, E., Rozplokhas, D., & Basold, H. (2020). The New Normal: We Cannot Eliminate Cuts in Coinductive Calculi, But We Can Explore Them. CoRR, abs/2008.03714. [pdf]
  8. Basold, H. (2018). Breaking the Loop: Recursive Proofs for Coinductive Predicates in Fibrations. ArXiv e-Prints. [pdf]

Theses

  1. Basold, H. (2018). Mixed Inductive-Coinductive Reasoning: Types, Programs and Logic [PhD Thesis, Radboud University]. [pdf]
  2. Basold, H. (2012). Transformation von Scade-Modellen zur SMT-basierten Verifikation [Master’s Thesis, TU Braunschweig]. [pdf]
  3. Basold, H. (2010). Parallelism Investigation for Elliptic Curve Key Exchange [Bachelor’s Thesis, TU Braunschweig]. [pdf]

Abstracts

  1. Basold, H., & Otten, D. (2021). M-Types and Bisimulation. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES). [pdf]
  2. Basold, H., & Veltri, N. (2020). A Type-Theoretic Potpourri: Towards Final Coalgebras of Accessible Functors. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES).
  3. Basold, H., van der Weide, N., & Veltri, N. (2019). Free Algebraic Theories as Higher Inductive Types. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES). [pdf]
  4. Basold, H. (2018, June). The Later Modality in Fibrations. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES).
  5. Basold, H. (2018, April). Recursive Proofs for Coinductive Predicates in Fibrations. CMCS Short Contributions.
  6. Basold, H., & Komendantskaya, E. (2016, November). Models of Inductive-Coinductive Logic Programs. Pre-Proceedings of the Workshop on Coalgebra, Horn Clause Logic Programming and Types (CoALP-Ty16). [pdf]
  7. Basold, H., & Geuvers, H. (2016, May). Type Theory Based on Dependent Inductive and Coinductive Types. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES). [doi] [pdf]
  8. Basold, H., & Geuvers, H. (2015, May). Dependent Inductive and Coinductive Types Through Dialgebras in Fibrations. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES). [pdf]
  9. Basold, H., & Geuvers, H. (2015, May). Dialgebra-Inspired Syntax for Dependent Inductive and Coinductive Types. Extended Abstracts for International Conference on Types for Proofs and Programs (TYPES). [pdf]
  10. Basold, H., H. Hansen, H., & Rutten, J. (2014). A Note on Typed Behavioural Differential Equations. CMCS Short Contributions. [pdf]
  11. Basold, H., & Hansen, H. H. (2014). Observational Equivalence for Behavioural Differential Equations. Extendend Abstracts for the Workshop on Proof, Structures and Computation. [pdf]
  12. Basold, H., Bonsangue, M., & Rutten, J. (2013). Algebraic Characterisations of Signal Flow Graphs. CALCO Early Ideas. [pdf]