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Compositional methods are central to the verification of software systems. For concurrent and communicating

systems, compositional techniques based on behavioural type systems have received much attention. By

abstracting communication protocols as types, these type systems can statically check that channels in a

program interact following a certain protocol—whether messages are exchanged in the intended order.

In this paper, we put on our coalgebraic spectacles to investigate session types, a widely studied class of

behavioural type systems. We provide a syntax-free description of session-based concurrency as states of

coalgebras. As a result, we rediscover type equivalence, duality, and subtyping relations in terms of canonical

coinductive presentations. In turn, this coinductive presentation enables us to derive a decidable type system

with subtyping for the 𝜋-calculus, in which the states of a coalgebra will serve as channel protocols. Going full

circle, we exhibit a coalgebra structure on an existing session type system, and show that the relations and type

system resulting from our coalgebraic perspective coincide with existing ones. We further apply to session

coalgebras the coalgebraic approach to regular languages via the so-called rational fixed point, inspired by the

trinity of automata, regular languages, and regular expressions with session coalgebras, rational fixed point,

and session types, respectively. We establish a suitable restriction on session coalgebras that determines a

similar trinity, and reveals the mismatch between usual session types and our syntax-free coalgebraic approach.

Furthermore, we extend our coalgebraic approach to account for context-free session types, by equipping

session coalgebras with a stack.
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1 INTRODUCTION
Communication protocols enable interactions between humans and computers alike, yet different

scientific communities rely on different descriptions of protocols: one community may use textual

descriptions, another uses diagrams, and yet another may use types. There is then a mismatch,

which is fruitful and hindering at the same time. Fruitful, because different views on protocols

lead to different insights and technologies. But hindering, because exactly those insights and
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technologies cannot be easily exchanged. With this paper, we wish to provide a view of protocols

that opens up new links between communities and that, at the same time, contributes new insights

into the nature of communication protocols.

What would such a view of communication protocols be? Software systems typically consist of

concurrent, interacting processes that pass messages over channels. Protocols are then a description

of the possible exchanges on channels, without ever referring to the exact structure of the processes

that use the channels. Since we may, for example, expect to get an answer only after sending a

question, it is clear that such exchanges have to happen in an appropriate order. Therefore, protocols

have to be a state-based abstraction of communication behaviour on channels. Because coalgebras
provide an abstraction of general state-based behaviour, our proposed view of communication

protocols becomes: model the states of a protocol as states of a coalgebra and let the coalgebra

govern the exchanges that may happen at each state of the protocol.

The above view of protocols allows us to model protocols as coalgebras. However, protocols

are usually not studied for the sake of their description but to achieve certain goals: ensuring

correct composition of processes, comparing communication behaviour, or refining and abstracting

protocols. Session types [29, 30] are an approach to communication correctness for processes that

pass messages along channels. The idea is simple: describe a protocol as a syntactic object (a type),

and use a type system to statically verify that processes adhere to the protocol. This syntactic

approach allows the automatic and efficient verification of many correctness properties. However,

the syntactic approach depends on choosing one particular representation of protocols and one
particular representation of processes. We show in this paper that our coalgebraic view of protocols

can guarantee correct process composition, and allows us to reason about key notions in the world

of session types, type equivalence, duality and subtyping, while being completely independent of

protocol and process representations.

Our coalgebraic view is best understood by following the distillation process of ideas on a

concrete session type system by Vasconcelos [61]. Consider the session type 𝑆 = ?int. !bool. end,
which specifies the protocol on one endpoint of a channel that receives an integer, then outputs a

Boolean, and finally terminates the interaction. Note that the protocol 𝑆 specifies three different

states: an input state, an output state, and a final state. Moreover, we note that 𝑆 specifies only how

the channel is seen from one endpoint; the other endpoint needs to use the channel with the dual
protocol !int. ?bool. end. Thus, session type systems ensure that the states of 𝑆 are enabled only

in the specified order and that the two channel endpoints implement dual protocols.

A state-based reading of session types is intuitive and is already present in programming concepts

such as typestates [22, 55, 56], theories of behavioural contracts [9, 11, 12, 19], and connections

between session types and communicating automata [16, 40]. The novelty and insight of the

coalgebraic view is that (1) it describes the state-based behaviour of protocols underlying session

types, supporting unrestricted types and delegation, without adhering to any specific syntax or

target programming model; (2) it offers a general framework in which key notions such as type

equivalence, duality, and subtyping arise as instances of well-known coinductive constructions;

and (3) it allows us to derive type systems for specific process languages, like the 𝜋-calculus.

Session Coalgebras at Work. How does this coalgebraic view of protocols work for session types?

Consider a “mathematical server” that offers three operations to clients: integer multiplication,

Boolean negation, and quitting. The following session type 𝑇 specifies a protocol to communicate

with this server.

𝑇 = 𝜇𝑋 . &


mul : ?int. ?int. !int. 𝑋

neg : ?bool. !bool. 𝑋

quit : end
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𝑇 is a recursive protocol, as indicated by “𝜇𝑋 . ”, which can be repeated. A client can choose, as

indicated by &, between the three operations (mul, neg, and quit) and the protocol then continues

with the corresponding actions. For instance, after choosing mul, the server requests two integers

and, once received, promises to send an integer over the channel. We can see states of the protocol

𝑇 emerging, and it remains to provide a coalgebraic view on the actions of the protocol to obtain

what we will call session coalgebras.

𝑞0
&

𝑞6
end

𝑞1
?

𝑞2
?

𝑞3
!

𝑞4
?

𝑞5
!

quit
mul

neg

int int

int

bool

bool

Fig. 1. Protocol of the mathematical server as a session coalgebra

Fig. 1 depicts a session coalgebra that describes protocol 𝑇 . It consists of states 𝑞0, . . . , 𝑞6, each

representing a different state of 𝑇 , and transitions between these states to model the evolution

of 𝑇 . Meaning is given to the different states and transitions through the labels on the states and

transitions. The state labels, written in red at top-left of the state name, indicate the branching type

of that state. Depending on the branching type, the labels of the transitions bear different meanings.

For instance, 𝑞0 is labelled with “&”, which indicates that this state initiates an external choice.

The labels on the three outgoing transitions for 𝑞0 (mul, neg, quit) correspond then to the possible

kinds of message for selecting one of the branches. Continuing, states 𝑞1, . . . , 𝑞5 are labelled with a

request for data (label ?) or the sending of data (label !), and the outgoing transition labels indicate

the type of the exchanged values (e.g., bool). Finally, state 𝑞6 decrees the end of the protocol (label

end). Note that the cyclic character of 𝑇 occurs as transitions back to 𝑞0; there is no need for an

explicit operator to capture recursion.

𝑠0
⊕

𝑠6
end

𝑠1
!

𝑠2
!

𝑠3
?

𝑠4
!

𝑠5
?

quit
mul

neg

int int

int

bool

bool

Fig. 2. Session coalgebra for the client view protocol the of mathematical server

A session coalgebra models the view on one channel endpoint, but to correctly execute a protocol

we also need to consider the dual session coalgebra that models the other endpoint’s view. In our
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example, the dual of Fig. 1 is given by the diagram in Fig. 2, which concerns states 𝑠0, . . . , 𝑠6. More

precisely, the states 𝑞𝑖 and 𝑠𝑖 are pairwise dual in the following sense. The external choice of 𝑞0
becomes an internal choice for 𝑠0, expressed through the label ⊕, with exactly the same labels on

the transitions leaving 𝑠0. This means that whenever the server’s protocol is in state 𝑞0 and the

client’s protocol in state 𝑠0, then the client can choose to send one of the three signals to the server,

thereby forcing the server protocol to advance to the corresponding state. All other states turn from

sending states into receiving states and vice versa. We will see that this duality relation between

states of session coalgebras has a natural coinductive description that can be obtained with the

same techniques as bisimilarity. The duality relation for 𝑇 will give us then the full picture of the

intended protocol.

Suppose a client who would only want to use multiplication once but could also handle real

numbers as inputs. Such a client had to follow the protocol given by the session coalgebra in Fig. 3,

with states 𝑟0, . . . , 𝑟5.

𝑟0
⊕

𝑟1
!mul

𝑟2
!int

𝑟3
?int

𝑟4
⊕real

𝑟5
endquit

Fig. 3. Session coalgebra that uses only part of a mathematical server

In theories of session types, the protocol of Fig. 2 is a subtype of the protocol in Fig. 3 (cf. [23, 24]).

Concretely, this new client can also follow the subtype protocol, and can thus communicate with

a server following the protocol of Fig. 1. For session coalgebras, we recover the same notion of

subtyping by using specific simulation relations that allow us to prove that the behaviour of 𝑟0 can

be simulated by 𝑠0. Together, simulations and duality provide the foundation of typical session type

systems.

We have used thus far session types and coalgebras for protocols with exchanges of simple data

values. In contrast, rich session type systems can regulate session delegation, the dynamic allocation

and exchange of channels by processes. Imagine a process that creates a channel, which should

adhere to some protocol 𝑇 . From an abstract perspective, the process holds both endpoints of the

new channel, and has to send one of them to the process it wishes to communicate with. To ensure

statically that the receiving process respects the protocol of this new channel, we need to announce

this communication as a transmission of the session type 𝑇 (via an existing channel) and use 𝑇 to

verify the receiving process. Session delegation adds expressiveness and flexibility, but may cause

problems in the characterisation of a correct notion of duality [25]. Remarkably, our coalgebraic

view of session types makes this characterisation completely natural.

As an example, consider the type𝑇 = 𝜇𝑋 . ?𝑋 . 𝑋 , which models a channel endpoint that infinitely

often receives channel ends of its own type𝑇 . To obtain the dual of𝑇 , we may naïvely try to replace

the receive with a send, which results in the type 𝜇𝑋 . !𝑋 . 𝑋 . The problem is that the two channel

endpoints would not agree on the type they are sending or receiving, as any dual type of 𝑇 needs

to send messages of type 𝑇 . Thus, the correct dual of 𝑇 would be the type 𝑈 = 𝜇𝑋 . !𝑇 . 𝑋 . Both 𝑇

and𝑈 specify the transmission of non-basic types, either the recursion variable 𝑋 or 𝑇 , in contrast

to the mathematical server that merely stipulated the transmission of basic data values (integers or

Booleans).

In our session coalgebras for the mathematical server it sufficed to have simple data types and

branching labels on transitions. However, to represent 𝑇 and 𝑈 we will need another mechanism

to express session delegation. We observe that a transmission in session types consists of the

transmitted data and the session type that the protocol must continue with afterwards. Thus, a

transition out of a transmitting state in a session coalgebra encompasses both a data transition
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and a continuation transition. In diagrams of session coalgebras, we indicate the data transition

by a coloured arrow and an arrow connecting the data to the continuation transition.

Using the combined transitions, Fig. 4 redraws the multiplication part of the mathematical server

in Fig. 1.

𝑞0
&

𝑞1
?

𝑞2
?

𝑞3
!

𝑞
int

mul
...

Fig. 4. Protocol of mathematical server as session coalgebra

This way, the transition 𝑞1
int

𝑞2 has been replaced by both a data transition into a new state

𝑞 and a continuation transition into 𝑞2. Moreover, 𝑞 has been declared as a data state that expects
an integer to be exchanged (label int).

Having added these transitions to our toolbox, we can present the two types 𝑇 and𝑈 as session

coalgebras. The diagram in Fig. 5 shows such a session coalgebra, in which we name the states

suggestively 𝑇 and𝑈 .

𝑈
!

𝑇
?

Fig. 5. Session coalgebra for a recursive type 𝑇 and its dual𝑈

Using this presentation as session coalgebras, it is now straightforward to coinductively prove

that the states 𝑇 and𝑈 are dual: (1) the states have opposite actions; (2) their data transitions point

to equal types; and (3) their continuations are dual by coinduction. Clearly, the last step needs some

justification but it will turn out that we can appeal to a standard definition of coinduction in terms

of greatest fixed points. This demonstrates that our coalgebraic view on session types makes the

definition of duality truly natural and straightforward.

Up to here, we have discussed session types and coalgebras that are linear, i.e., they enforce that

protocols complete exactly once. In many situations, one also needs unrestricted types, which enable

sharing of channels between processes that access these channels concurrently. This is the case of

a process that offers a service for other processes, for instance a web server. Session delegation

allows us to create dynamically channels and check their protocols, but the shared channel for

initiating a session [24] has to offer its protocol to an arbitrary number of clients. Unrestricted types

enable us to specify these kind of service offers.

As an example, consider a process that provides a channel for communicating integers to anyone

asking, like a town hall official handing out citizen numbers. The session type𝑈 ′ = 𝜇𝑋 . un !int. 𝑋
represents the corresponding protocol, where “un” qualifies the type !int. 𝑋 as unrestricted. This

allows the process holding the end of a channel with type𝑈 ′
to transmit an integer to any process

that is connected to the shared channel, without any restriction on their number. Using this, it

is surprisingly simple to express 𝑈 ′
in our coalgebraic view: we introduce a new state label “un”

(unrestricted). The idea is that states reachable from an un-labelled state can be used arbitrarily

as protocols across different processes connecting to a channel that follows the protocol given by

those states. The following diagram shows a session coalgebra with a state that corresponds to𝑈 ′
:
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𝑈 ′
un

𝑞1
!

𝑞2
int

Contributions. In this paper, we make the following contributions.

(1) We introduce the notion of session coalgebra, which justifies the state-based behaviour of

session types from a coalgebraic perspective. Using coalgebra as a unifying framework for

session types has two advantages:

• session coalgebras can be defined and studied independently from specific syntactic formu-

lations, while keeping the operational behaviour of session types; and

• we can uncover the innate coinductive nature of key notions in session types, such as

duality, subtyping, and type equivalence through standard coalgebraic techniques.

(2) To enable the verification of processes against protocols described by session coalgebras,

we also contribute a type system for 𝜋-calculus processes, in which channel types are given

by states of an arbitrary session coalgebra. Exploiting our coalgebraic perspective, our type

system supports subtyping by combining elements from type systems by Gay and Hole [24]

and by Vasconcelos [61].

(3) We provide a type checking algorithm for that system, provided that the underlying session

coalgebra fulfils two intuitive conditions. In doing so, we show how a specific type syntax

can be equipped with a session coalgebra structure and how the two decidability conditions

are reflected in the type system.

(4) Finally, we show how the coalgebraic approach naturally extends to the more expressive

context-free session types by Thiemann et al. [58], by equipping session coalgebras with a

stack, which allows the finitary presentation of session types with sequential composition.

Related Work. To our knowledge, a coalgebraic justification to session types is novel, although

specific state-based description of protocols have been considered before [9, 11, 12, 15, 16, 19, 22,

40, 55, 56]. In particular, although communicating automata can also provide syntax-independent

characterisations of session types (see, e.g., [16, 17]), such characterisations do not support delega-

tion, an expressive feature which is cleanly justified in our coalgebraic approach.

Coinduction already has been exploited in the definition of type equivalence [58], subtyping [23,

24] and, especially, duality for systems with recursive types [7, 25, 39]. Unlike ours, these previous

definitions are language-dependent, as they are tailored to specific process languages and/or

syntactic variants of the type discipline. Session coalgebras enable thus the generalisation of

insights and technologies from specific languages to any protocol specification that fits under the

umbrella of state-based sessions.

We show how a specific type syntax can be equipped with an appropriate coalgebraic structure.

This is in contrast to starting with a specific type syntax and then employing category theoretical

ideas, as done in [59], where coinductive session types are encoded in a session type system with

parametric polymorphism [10].

Organisation. Throughout the paper we will turn the ideas sketched above into a coalgebraic

framework. We introduce in Sec. 2 a concrete session type syntax that we will use as illustration

of our framework. In Sec. 3, we will define session coalgebras as coalgebras for an appropriate

functor and show that the type system from Sec. 2 can be equipped with a coalgebraic structure.

The promised coinductive view on type equivalence, duality, subtyping, etc. will be provided in

Sec. 4. Moreover, we will show that these notions are decidable under certain conditions that hold

for any reasonable session type syntax, including the one from Sec. 2. Up to that point, the session

coalgebras only had intrinsic meaning and were not associated to any process representation. Sec. 5

sets forth a type system for 𝜋-calculus, in which channels are assigned states of a session coalgebra
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𝑝 ::= ?𝑇 . 𝑆

| !𝑇 . 𝑆

| &{𝑙𝑖 : 𝑆𝑖 }𝑖∈𝐼
| ⊕{𝑙𝑖 : 𝑆𝑖 }𝑖∈𝐼

𝑞 ::= lin | un

𝑆 ::= end

| 𝑞 𝑝

| 𝑋 ∈ Var
| 𝜇𝑋 . 𝑆

𝑇 ::= 𝑆 | 𝑑 ∈ 𝐷

Fig. 6. Session types over sets of basic data types 𝐷 and of variables Var

as types. The resulting type system features subtyping and algorithmic type checking, presented in

Sec. 6. In Sec. 7 we illustrate how to expand the coalgebraic presentation to account for context-free

session types. Some final thoughts are gathered in Sec. 8.

This paper is an extended version of the conference paper [34], which goes into more detail

regarding proofs and collects additional new material on context-free session types.

2 SESSION TYPES
To motivate the development of session coalgebras, we recall in this section the concrete syntax of

an existing session type system by Vasconcelos [61]. After building up our intuition, we introduce

session coalgebras in Sec. 3 to show they can represent this concrete type system.

The types of the system that we will be using are generated by the grammar in Fig. 6, relative to a

set of basic data types 𝐷 and a countable set of type variables Var. This grammar has four syntactic

categories: pretypes 𝑝 , qualifiers 𝑞, session types 𝑆 , and types 𝑇 , which contains both session and

basic types. A pretype 𝑝 is simply a communication action: send (!), receive (?), external choice (&),

and internal choice (⊕) indexed by a finite sets 𝐼 of labels, followed by one or multiple session types.

The simplest types are basic data types in 𝐷 and the completed, or terminated, protocol represented

by end. A pretype and qualifier also form a session type, written as 𝑞 𝑝 . The “lin” qualifier enforces
that the communication action 𝑝 has to be carried out exactly once, while the “un” qualifier allows
arbitrary use of 𝑝 . Finally, we can form recursive session types with the fixed point operator 𝜇 and

the use of type variables. We use the usual notion of 𝛼-equivalence, (capture-avoiding) substitution,

and free and bound type variables for session types.

The grammar allows arbitrary recursive types. We let Type be the set of all 𝑇 in which recursive

types are contractive and closed, which means that they contain no substrings of the form 𝜇𝑋1 .𝜇𝑋2

. . . 𝜇𝑋𝑛 .𝑋1 and no free type variables. In a slight abuse of notation, we will use 𝑇 to range over

elements of Type from here on.

To lighten up notation, we will usually omit the qualifier lin and assume every type to finalise

with end. With these conventions, we write, e.g., ?int. instead of lin ?int. end and un ?int. for a
single unrestricted receive.

We assume there is some decidable subtyping preorder ≤𝐷 over the basic types. A type is a

subtype of another if the subtype can be used anywhere where the supertype was accepted. In

examples, we use the basic types int, real, and bool, and we assume that int is a subtype of real,
as usual.

An important notion is the unfolding of a session type, which we define next:

Definition 2.1 (Unfolding). The unfolding of a recursive type 𝜇𝑋 .𝑆 is defined recursively

unfold (𝜇𝑋 .𝑆) = unfold (𝑆 [𝜇𝑋 .𝑆/𝑋 ])
For all other 𝑇 in Type, unfold is the identity: unfold (𝑇 ) = 𝑇 .
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Because we assume that types are contractive, unfold (𝑇 ) terminates for all 𝑇 . Also, because all

types are required to be closed, unfold (𝑇 ) can never be a variable 𝑋 . Any such variable would

have to be bound somewhere before use, meaning it would have been substituted. Furthermore,

unfolding a closed type always yields another closed type, as each removed binder always causes a

substitution of the bound variable.

3 SESSION COALGEBRA
Here we will discuss session coalgebras, the main contribution of this paper. The idea is that session

coalgebras will be coalgebras for a specific functor 𝐹 , which will capture the state labels and the

various kinds of transitions that we discussed in Sec. 1. An important feature of coalgebras in

general, and session coalgebras in particular, is that the states can be given by an arbitrary set. We

will leverage this to define a session coalgebra on the set of types Type introduced in Sec. 2.

3.1 Preliminaries
Before coming to the definition, let us briefly recall some notions of category theory [4, 8, 47]. We

will not require a lot of category theoretical terminology; in fact, we will only use the category

Set of sets and functions. Moreover, we will be dealing with functors 𝐹 : Set → Set on the category

Set. Such a functor allows us to map a set 𝑋 to a set 𝐹 (𝑋 ), and functions 𝑓 : 𝑋 → 𝑌 to functions

𝐹 (𝑓 ) : 𝐹 (𝑋 ) → 𝐹 (𝑌 ). A functor must preserve identity and compositions, that is, 𝐹 maps the

identity function id𝑋 : 𝑋 → 𝑋 on 𝑋 to the identity on 𝐹 (𝑋 ): 𝐹 (id𝑋 ) = id𝐹 (𝑋 ) ; and, given functions

𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 , we must have 𝐹 (𝑔 ◦ 𝑓 ) = 𝐹 (𝑔) ◦ 𝐹 (𝑓 ).
A central notion is that of the coalgebras [33, 49, 50] for a functor 𝐹 . A coalgebra is given by a

pair (𝑋, 𝑐) of a set 𝑋 and a function 𝑐 : 𝑋 → 𝐹 (𝑋 ). For simplicity, we often leave out 𝑋 and refer

to 𝑐 as the coalgebra. The general idea is that the set 𝑋 is the set of states and that 𝑐 assigns to

every state its one-step behaviour. In the case of session coalgebras this will be the state labels and

outgoing transitions. Given two coalgebras 𝑐 : 𝑋 → 𝐹 (𝑋 ) and 𝑑 : 𝑌 → 𝐹 (𝑌 ), we say that ℎ : 𝑋 → 𝑌

is a homomorphism, if 𝑑 ◦ ℎ = 𝐹 (ℎ) ◦ 𝑐 . Coalgebras and their homomorphisms form a category

CoAlg(𝐹 ), with the same identity maps and composition as in Set.

3.2 Session Coalgebras
Coming to the concrete case of session coalgebras, we now construct a functor that allows us to

capture the state labels and the different kinds of transitions. Keeping in mind that states of a

session coalgebra correspond to states of a protocol, we need to be able to label the states with

enabled operations. Depending on their operations, states may also have polarities.

Definition 3.1 (Operations and Polarities). We let 𝑂 be the set of all operations 𝑂 = {com, branch,

end, bsc, un} and 𝑃 the set of polarities 𝑃 = {in, out}.

The operation of a state describes the action it represents: ‘com’ marks the transmission (sending

or receiving) of a value; ‘branch’ marks an (internal or external) choice; ‘end’ marks the completed

protocol; ‘bsc’ marks a basic data type; and ‘un’ marks an unrestricted type. States that transmit

data (labelled with ‘com’) or allow for choice (labelled with ‘branch’) also have a polarity, which

can be either ‘in’ (a receiving action or external choice) or ‘out’ (a sending action or internal choice).

Note that pairs in {com, branch} ×𝑃 correspond directly to the actions that can appear in session

types: ? = (com, in), ! = (com, out), & = (branch, in) and ⊕ = (branch, out). We will be using these

markers to abbreviate the pairs.

Now that we have the possible operations of a protocol, we need to define the transitions that may

follow each operation. Recall that the transition at a choice state has to be labelled with messages

that resolve that choice. We therefore assume to be given a set L of possible choice labels. The
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variable 𝑙 will be used to refer to an element of L. Then, P+
<ℵ0

(L) is the set of all finite, non-empty,

subsets of L. Variables 𝐿, 𝐿1, 𝐿2, . . . refer to these finite, non-empty subsets of L.
Our goal is to define a polynomial functor [21] that captures the states labels and transitions.

This requires some further formal language. First, given sets 𝑋 and 𝑌 , we denote by 𝑋𝑌
the set of

all (total) functions from 𝑌 to 𝑋 . Second, given a family of sets {𝑋𝑖 }𝑖∈𝐼 indexed by some set 𝐼 , their

coproduct is the set
∐

𝑖∈𝐼 𝑋𝑖 = {(𝑖, 𝑥) | 𝑖 ∈ 𝐼 , 𝑥 ∈ 𝑋𝑖 }.
We are now ready to define session coalgebras:

Definition 3.2 (Session Coalgebras). Let ∗ and d be some fixed distinct elements, and let 𝐴 and 𝐵𝑎
be sets defined as follows, where 𝑎 ∈ 𝐴. Recall that 𝐷 is the set of all basic data types.

𝐴 = {com} × 𝑃 𝐵com,𝑝 = {∗,d}
∪ {branch} × 𝑃 × P+

<ℵ0

(L) 𝐵branch,𝑝,𝐿 = 𝐿

∪ {end} 𝐵end = ∅
∪ {bsc} × 𝐷 𝐵bsc,𝑑 = ∅
∪ {un} 𝐵un = {∗}

The polynomial functor 𝐹 : Set → Set is defined by

𝐹 (𝑋 ) =
∐
𝑎∈𝐴

𝑋𝐵𝑎

𝐹 (𝑓 ) (𝑎,𝑔) = (𝑎, 𝑓 ◦ 𝑔)

A coalgebra (𝑋, 𝑐) for the functor 𝐹 is called a session coalgebra.

Let us unfold this definition. Given a session coalgebra 𝑐 : 𝑋 → 𝐹 (𝑋 ) and a state 𝑥 ∈ 𝑋 , we find

in 𝑐 (𝑥) ∈ 𝐹 (𝑋 ) the information of 𝑥 encoded as a tuple (𝑎, 𝑓 ) with 𝑎 ∈ 𝐴 and 𝑓 : 𝐵𝑎 → 𝑋 . From 𝑎,

we get directly the operation, and the polarity for com states, the type of values communicated

for bsc states or the message labels of branch states. The function 𝑓 encodes the transitions out

of 𝑥 . The domain of 𝑓 is exactly the set of labels that have a transition, and is dependent on the

kind of state declared by 𝑎. If 𝑓 has a domain of cardinality two or more, then one can think of

the state 𝑥 “splitting” into states that will be visited one after another. This idea corresponds to

the intuition expressed in the diagrams of session coalgebras above, and has been previously used

to model processes with binary “splitting” and communication [35, 52]. Here we are not so much

interested in the coalgebraic semantics [27] of session types; rather, we aim to define a coalgebraic

view on them that allows the derivation of everything a type system for processes needs.

It is convenient to partition the domain of the transition map 𝑓 into data and continuations.

Notice how only com states have data transitions, for other states, all transitions are continuations.

As usual, we write dom(𝑓 ) for the domain of 𝑓 .

Definition 3.3. Suppose 𝑐 (𝑥) = (com, 𝑝, 𝑓 ), then the data domain of 𝑓 is 𝑑𝑜𝑚𝐷 (𝑓 ) = {d} and the

continuation domain is 𝑑𝑜𝑚𝐶 (𝑓 ) = {∗}. In all other cases, 𝑑𝑜𝑚𝐷 (𝑓 ) = ∅ and 𝑑𝑜𝑚𝐶 (𝑓 ) = 𝑑𝑜𝑚(𝑓 ).

We will have to analyse subsets of coalgebras that are closed under transitions. Given a session

coalgebra 𝑐 : 𝑋 → 𝐹 (𝑋 ), we say that 𝑑 : 𝑌 → 𝐹 (𝑌 ) with 𝑌 ⊆ 𝑋 is a subcoalgebra of 𝑐 if the inclusion
map 𝑌 → 𝑋 is a coalgebra homomorphism. If 𝐹 weakly preserves pullbacks, then 𝑐 (𝑌 ) ⊆ 𝐹 (𝑌 ) and
thus 𝑑 is the restriction of 𝑐 to 𝑌 [49, Thm. 6.3]. As all functors that we consider are weakly pullback

preserving, we will also refer to 𝑌 as subcoalgebra. The subcoalgebra generated by 𝑥 ∈ 𝑋 in 𝑐 ,

denoted by ⟨𝑥⟩𝑐 , is the least subset of 𝑋 that contains 𝑥 and is a subcoalgebra of 𝑐 [49]. Intuitively,

it is the set that includes 𝑥 and all states that are reachable from 𝑥 .
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3.3 An Alternative Presentation of Session Coalgebras
Session coalgebras (𝑋, 𝑐) are rather complex. We show how to build up 𝑐 as the combination

of two simpler functions, denoted 𝜎 and 𝛿 , so that 𝑐 (𝑥) = (𝜎 (𝑥), 𝛿 (𝑥)) with 𝜎 : 𝑋 → 𝐴 and

𝛿 (𝑥) : 𝐵𝜎 (𝑥 ) → 𝑋 . Observe that every state gets an operation in 𝑂 assigned, thus we may assume

that there is a map op: 𝑋 → 𝑂 . Depending on the operation given by op(𝑥), the label on 𝑥 will

then have different other ingredients that are captured in the following proposition.

To formulate the proposition, we need some notation. Suppose 𝑓 : 𝑋 → 𝐼 is a map and 𝑖 ∈ 𝐼 .

We define the fibre 𝑋 𝑓

𝑖
of 𝑓 over 𝑖 to be 𝑋

𝑓

𝑖
= {𝑥 ∈ 𝑋 | 𝑓 (𝑥) = 𝑖}. Moreover, we let the pairing of

functions 𝑓 and 𝑔 be ⟨𝑓 , 𝑔⟩(𝑥) = (𝑓 (𝑥), 𝑔(𝑥)).

Proposition 3.4. A session coalgebra (𝑋, 𝑐) can equivalently be expressed by providing the follow-
ing maps:

op : 𝑋 → 𝑂 maps each state to an operation
pol : 𝑋

op
com

+ 𝑋
op
branch

→ 𝑃 maps com and branch states to a polarity
la : 𝑋

op
branch

→ P+
<ℵ0

(L) maps branch states to a set of labels
da : 𝑋

op
bsc

→ 𝐷 maps bsc states to their basic type
𝛿𝑎 : 𝑋𝜎

𝑎 → 𝑋𝐵𝑎 maps each state to a transition function,

where

𝜎 (𝑥) =


⟨op, pol⟩(𝑥) if op(𝑥) = com

⟨op, pol, la⟩(𝑥) if op(𝑥) = branch

⟨op, da⟩(𝑥) if op(𝑥) = bsc

op(𝑥) if op(𝑥) = end or op(𝑥) = un

We specified 𝛿𝑎 as a family of transition functions so we can express the necessary constraints

in terms of the codomains. We can define a single global transition function as 𝛿 (𝑥) = 𝛿𝜎 (𝑥 ) (𝑥).
This is how the coalgebra finally becomes 𝑐 (𝑥) = (𝜎 (𝑥), 𝛿 (𝑥)). As long as the provided functions

map the appropriate elements of 𝑋 to the specified codomains, this derived function will conform

to 𝑐 : 𝑋 → 𝐹 (𝑋 ).
The procedure also works backwards: given any session coalgebra, we can derive functions

op(𝑥), pol(𝑥), etc. from 𝑐 (𝑥). We will often use op(𝑥), 𝜎 (𝑥), and 𝛿 (𝑥) to refer to those specific parts
of an arbitrary session coalgebra.

3.4 Coalgebra of Session Types
In Sec. 1, we informally explained how session types can be represented as states of a session

coalgebra. We will now justify this claim by showing that session types are, in fact, states of a

specific session coalgebra (Type, 𝑐Type).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



Session Coalgebras 1:11

We define the functions op, pol, 𝛿 , and la (see Prop. 3.4) on Type. Using Prop. 3.4, we can then

derive 𝑐Type : Type → 𝐹 (Type). Let us begin with the linear types.

𝑇
𝑐Type (𝑇 )

op(𝑇 ) pol(𝑇 ) 𝛿 (𝑇 ) la(𝑇 )

lin ?𝑇 . 𝑇 ′
com

𝑖𝑛 𝛿 (𝑇 ) (∗) = 𝑇 ′

𝛿 (𝑇 ) (d) = 𝑇lin !𝑇 . 𝑇 ′ 𝑜𝑢𝑡

lin&{𝑙𝑖 : 𝑇𝑖 }𝑖∈𝐼
branch

𝑖𝑛
𝛿 (𝑇 ) (𝑙𝑖 ) = 𝑇𝑖 {𝑙𝑖 | 𝑖 ∈ 𝐼 }

lin⊕{𝑙𝑖 : 𝑇𝑖 }𝑖∈𝐼 𝑜𝑢𝑡

Under this definition, la(𝑇 ) is finite, by virtue of an expression being a finite string. The completed

protocol end and basic types 𝑑 are straightforward: 𝑐 (end) = (end, 𝑓∅) and 𝑐 (𝑑) = (bsc, 𝑑, 𝑓∅) for
any 𝑑 ∈ 𝐷 , where 𝑓∅ : ∅ → 𝑋 is the empty function.. Recursive types are handled according to

their unfolding, 𝑐 (𝜇𝑋 . 𝑇 ) = 𝑐 (unfold (𝜇𝑋 . 𝑇 )). Recall that contractivity ensures that unfold always

terminates. As our types are closed, all recursion variables are substituted during the unfolding

of their binder. Consequently, we do not need to define 𝑐 on these variables. Also note that this

definition results in an equi-recursive interpretation of recursive types, i.e., a recursive type and its

unfolding are considered as equal.

Session types can also be unrestricted, and consist of a pretype 𝑝 with a qualifier un. Session
coalgebras have un states to mark unrestricted types; the continuation describes what the actual

interaction is. Thus, we define op(un 𝑝) = un and 𝛿 (un 𝑝) (∗) = lin 𝑝 .

Remark 1 (Alternative Syntaxes and their Functors). The unrestricted session types that we have

adopted are fairly standard, but they are not the only ones in the literature. Most notably, Gay and

Hole [24] defined a type [̂𝑇1, . . . ,𝑇𝑛] that allows infinite reading and writing. To allow for such

behaviour in session coalgebra, we can change 𝐵un to a set of two elements, such a {∗1, ∗2}. Like
internal choice, the two transitions describe an option of which behaviour to follow, but without

sending synchronisation signals. One transition could go to a read, and the other to a write, both

recursively continuing as the original type [̂𝑇1, . . . ,𝑇𝑛].
It is possible, although not entirely trivial, to change the further definitions appropriately and

get a decidable type checking algorithm encompassing both the syntax presented in this work, and

Gay and Hole’s syntax. We choose not to, so to keep the presentation simpler.

4 TYPE EQUIVALENCE, DUALITY AND SUBTYPING
Up to here, we have represented session types as session coalgebras, but we have not yet given

a precise semantics to them. As a first step, we will define three relations on states: bisimulation,
duality, and simulation. Bisimulation is also called behavioural equivalence for types; we will show

that bisimilar types are indeed equivalent. Duality specifies complementary types: it tells us which

types can form a correct interaction. Simulation will provide a notion of subtyping: it tells us when a

type can be used where another type was expected. Besides relations on session coalgebras, we also

introduce the parallelizability of states that allows us to rule out certain troubling unrestricted types.

Finally, we will obtain conditions on coalgebras to ensure the decidability of the three relations

and therefore the type system that we derive in Sec. 5.

In the following, we will denote by Rel𝑋 the poset P(𝑋 × 𝑋 ) of all relations on 𝑋 ordered by

inclusion. Recall that a post-fixpoint of a monotone map 𝑔 : Rel𝑋 → Rel𝑋 is a relation 𝑅 ∈ Rel𝑋

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:12 Alex C. Keizer, Henning Basold, and Jorge A. Pérez

with 𝑅 ⊆ 𝑔(𝑅). Note that Rel𝑋 is a complete lattice and that therefore any monotone map has a

greatest post-fixpoint, which is also the greatest fixpoint, by the Knaster-Tarski Theorem [57].

We will define bisimulation, simulation, and duality as the greatest (post-)fixpoint of monotone

functions, which we will therefore call coinductive definitions. This definition turns out to be

intuitively what we would expect and the interaction of infinite behaviour with other type features

is automatically correct. The coinductive definitions also give us immediately proof techniques

for equivalence, duality, and subtyping: to show that two states are, say, dual we only have to

establish a relation that relates the two states and show that it is a post-fixpoint. This technique

can then be enhanced in various ways [48] and we will show that it is decidable for reasonable

session coalgebras.

4.1 Bisimulation
Two states of a coalgebra are said to be bisimilar if they exhibit equivalent behaviour. We abstract

away from the precise structure of a coalgebra and only consider its observable behaviour. Two

states of a session coalgebra are bisimilar if their labels are equal and if the states at the end of

matching transitions are again bisimilar. There is one exception to the equality of labels: basic types

can be related via their pre-order, which does not have to coincide with equality.

Definition 4.1. Given some coalgebra (𝑋, 𝑐), we define 𝑐∗ : Rel𝐹 (𝑋 ) → Rel𝑋 , the binary preimage

of 𝑐 , as follows:

𝑐∗ (𝑅) = {(𝑥,𝑦) | (𝑐 (𝑥), 𝑐 (𝑦)) ∈ 𝑅} .

Definition 4.2. We define the function 𝑓∼ : Rel𝑋 → Rel𝐹 (𝑋 ) as

𝑓∼ (𝑅) = { ((𝑎, 𝑓 ), (𝑎, 𝑓 ′)) | (∀𝛼 ∈ 𝑑𝑜𝑚(𝑓 )) 𝑓 (𝛼) 𝑅 𝑓 ′ (𝛼)}
∪ { ((bsc, 𝑑, 𝑓∅), (bsc, 𝑑 ′, 𝑓∅)) | 𝑑 ≤𝐷 𝑑 ′ ∧ 𝑑 ′ ≤𝐷 𝑑 }

where 𝑓∅ : ∅ → 𝑋 is the empty function.

It can be easily checked that 𝑐∗ and 𝑓∼ are both monotone maps and thus also their composition.

Thus, the greatest fixpoint in the following definition exists.

Definition 4.3 (Bisimilarity). Let 𝑔∼ = 𝑐∗ ◦ 𝑓∼. A relation 𝑅 is called a bisimulation if it is a

post-fixpoint of 𝑔∼. We call the greatest fixpoint of 𝑔∼ bisimilarity and denote it by ∼.

It should be noted that 𝑓∼ is not the canonical relation lifting typically considered to construct

bisimilarity as coinductive relation [20, 28, 54]. The reason is simply that we only assume the data

types 𝐷 to form a preorder and thus we need to check the order in both directions. The map 𝑓∼
would be the canonical relation lifting if we turned 𝐷 into a poset.

4.2 Duality
Duality describes exactly opposite types in terms of their polarity. That is, the dual of input is

output and the dual of output is input: 𝑖𝑛 = 𝑜𝑢𝑡 and 𝑜𝑢𝑡 = 𝑖𝑛. We can extend this to tuples 𝑎 in 𝐴,

see Def. 3.2, with the exception of basic types because they do not describe channels:

(com, 𝑝) = (com, 𝑝 ) (end) = (end)

(branch, 𝑝, 𝐿) = (branch, 𝑝 , 𝐿) (un) = (un)

(bsc, 𝑑) is undefined
The next step is to compare transitions. Continuations of 𝑑𝑜𝑚𝐶 (𝑓 ) need to be dual. The data types

that are sent or received need to be equivalent, hence transitions of 𝑑𝑜𝑚𝐷 (𝑓 ) need to go to bisimilar
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states. We capture this idea with the monotone map 𝑓⊥ : Rel𝑋 → Rel𝐹 (𝑋 ) defined as follows.

𝑓⊥ (𝑅) =
{
((𝑎, 𝑓 ), ( 𝑎 , 𝑓 ′))

���� (∀𝛼 ∈ 𝑑𝑜𝑚𝐶 (𝑓 )) 𝑓 (𝛼) 𝑅 𝑓 ′ (𝛼) and
(∀𝛽 ∈ 𝑑𝑜𝑚𝐷 (𝑓 )) 𝑓 (𝛽) ∼ 𝑓 ′ (𝛽)

}
Definition 4.4 (Duality). Let 𝑔⊥ = 𝑐∗ ◦ 𝑓⊥. A relation 𝑅 is called a duality relation if it is a

post-fixpoint of 𝑔⊥. We call the greatest fixpoint of 𝑔⊥ duality and denote it by ⊥.

4.3 Parallelizability
Unlike a linear endpoint, a channel endpoint with an unrestricted type may be shared between

multiple parallel processes.

There is no coordination of messages over a single channel: messages consecutively sent from

one process may be received by different processes, and a single process may receive messages

originating from different processes.

Futhermore, we wish to type-check each process independently. That is, to type-check 𝑃 running

in parallel with 𝑄 , we first look at 𝑃 (forgetting entirely about 𝑄), and then consider 𝑄 (again, not

taking into account 𝑃 at all). The type of the unrestricted channel should carry all information

needed to make sure the parallel composition of 𝑃 and 𝑄 will work correctly, assuming 𝑃 and 𝑄

are individually well-formed. This is not the case for all types that can be represented by session

coalgebras.

Example 4.5. Suppose we would allow a channel 𝑥 of type 𝜇𝑋 . un !int. un !bool. 𝑋 to be used

by, say, by some parallel processes 𝑃1 and 𝑃2 that first write some integer, and then some Boolean

value to the channel:

𝑃1 : send “1” on 𝑥 , then send “true” on 𝑥

𝑃2 : send “2” on 𝑥 , then send “false” on 𝑥

Both processes are checked independently, and both conform to the protocol, so all seems well.

Nonetheless, the following is a possible trace of 𝑃1 and 𝑃2 running in parallel:

𝑃1 sends “1” → 𝑃2 sends “2” → 𝑃1 sends “true” → 𝑃2 sends “false”

Although both processes locally conform to the type, when running in parallel the channel can

carry two consecutive integers. A process reading from the channel might receive these consecutive

integers, even though the type specifies that each integer must be followed by a Boolean.

So, only a subset of unrestricted types can safely be used (by parallel processes), we call such

types parallelizable. We will later define the type system such that well-formed processes can only

interact with unrestricted types which are parallelizable. Hence, unrestricted, non-parallelizable

types can be thought of as being invalid in a certain sense.

Definition 4.6. Given a coalgebra (𝑋, 𝑐), some subset 𝑌 ⊆ 𝑋 is parallelizable, written par(𝑌 ), if
for every 𝑥 and 𝑦 in 𝑌 one of the following holds: 𝑥 ∼ 𝑦, or 𝜎 (𝑥) = un, or 𝜎 (𝑦) = un.

Intuitively, a set of states is parallelizable if every message that is sent or received is of the same

form. That is, either all messages are branch labels, drawn from the same set, or all messages are

communications of the same data type. We make this slightly stronger and say that all states should

be pairwise bisimilar. The only exception are un states: since they do not (directly) represent any

channel interactions, they can effectively be ignored.

Often we are interested in the parallelizability only of a specific state. Recall that ⟨𝑥⟩𝑐 denotes
the subcoalgebra generated by 𝑥 ∈ 𝑋 in 𝑐 .
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ℎ⊑ (𝑅) = { ((com, 𝑖𝑛, 𝑓 ), (com, 𝑖𝑛, 𝑔)) | 𝑓 (∗) 𝑅 𝑔(∗) and 𝑓 (d) 𝑅 𝑔(d) }
∪ { ((com, 𝑜𝑢𝑡, 𝑓 ), (com, 𝑜𝑢𝑡, 𝑔)) | 𝑓 (∗) 𝑅 𝑔(∗) and 𝑔(d) 𝑅 𝑓 (d) }
∪ { ((branch, 𝑖𝑛, 𝐿1, 𝑓 ),

(branch, 𝑖𝑛, 𝐿2, 𝑔)) | 𝐿1 ⊆ 𝐿2 and ∀𝑙 ∈ 𝐿1. 𝑓 (𝑙) 𝑅 𝑔(𝑙) }
∪ { ((branch, 𝑜𝑢𝑡, 𝐿1, 𝑓 ),

(branch, 𝑜𝑢𝑡, 𝐿2, 𝑔)) | 𝐿2 ⊆ 𝐿1 and ∀𝑙 ∈ 𝐿2. 𝑓 (𝑙) 𝑅 𝑔(𝑙) }
∪ { ((bsc, 𝑑, 𝑓∅), (bsc, 𝑑 ′, 𝑓∅)) | 𝑑 ≤𝐷 𝑑 ′ }
∪ { ((end, 𝑓∅), (end, 𝑓∅)) }
∪ { ((un, 𝑓 ), (un, 𝑔)) | 𝑓 (∗) 𝑅 𝑔(∗), and par(𝑓 (∗)) iff par(𝑔(∗)) }

Fig. 7. Monotone map ℎ⊑ : Rel𝑋 → Rel𝐹 (𝑋 ) that defines simulations

Definition 4.7. Let ⟨𝑥⟩≫𝑐 be the smallest subset of ⟨𝑥⟩𝑐 that contains 𝑥 and is closed under contin-

uation transitions:

⟨𝑥⟩≫𝑐 =
⋂

{𝑌 ⊆ 𝑋 | 𝑥 ∈ 𝑌 and 𝛿 (𝑦) (𝛼) ∈ 𝑌 for all 𝑦 ∈ 𝑌 and 𝛼 ∈ 𝑑𝑜𝑚𝐶 (𝛿 (𝑦)) }

A state 𝑥 is parallelizable, written par(𝑥), if ⟨𝑥⟩≫𝑐 is parallelizable.

4.4 Simulation and Subtyping
Intuitively, a coalgebra simulates another if the behaviour of the latter “is contained in” the former.

Subtyping, originally defined on session types by Gay and Hole [24], is a notion of substitutability

of types [23]. We will define our notion of simulation such that it coincides with subtyping, just

like bisimulation provides a notion of type equivalence [24].

We motivate subtyping in session types, and its related notions of covariance and contravariance.
Consider a process 𝑃 with a channel 𝑥 with type𝑇 = ?real. That is, 𝑃 is ready to receive on 𝑥 a real

value and to treat it as such. Suppose 𝑃 is meant to interact with another process 𝑄 , which is ready

to provide values on 𝑥 . Clearly, 𝑃 can operate correctly if 𝑄 were to send an int over 𝑥 , because
every int is a real. This way, to formalize the correct interaction between 𝑃 and 𝑄 , channel 𝑥

in 𝑃 can also be safely specialized to have the type 𝑆 = ?int. Indeed, because int is a subtype of
real, we will have that ?int is a subtype of ?real. Thus, the session types (i.e., ?int and ?real)
are related in the same order as the data types (i.e., int and real); this is called covariance.

Now consider a process 𝑄 with a channel 𝑦 with type 𝑇 = !int, and a process 𝑅 with a channel

with type ?real. Again, because every int is a real, 𝑅 can operate correctly with an integer

received from 𝑄 . To formalize this, channel 𝑦 in 𝑄 can be safely generalized to have the session

type 𝑆 = !real. That is, !real is a subtype of !int. Thus, in this case, the session types (i.e., !real
and !int) are related in the opposite orders as the data types; this is called contravariance.
Subtyping can be justified similarly for labelled choices: the subtype of an external choice can

have a subset of choices, while the subtype of an internal choice can add more options. For all

types, it holds that states reached through transitions are covariant, i.e., if 𝑇 is a subtype of 𝑈 ,

continuations of 𝑇 must be subtypes of continuations (of the same label) of𝑈 .

Finally, consider a process 𝑃 with a channel 𝑥 of type 𝑇 = 𝜇𝑋 . ?real. ?real. 𝑋 . Following the
reasoning above, one might suspect 𝑥 could be specialized to have type 𝑈 = 𝜇𝑋 . ?real. ?int. 𝑋 ,
but this is not the case.𝑇 is parallelizable, so 𝑃 can safely interact with it, but𝑈 is not parallelizable,

so if 𝑥 were of the latter type, the channel could not be used. Thus, subtyping of unrestricted types

comes with the extra condition that subtypes must have the same parallelizability.
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The monotone map ℎ⊑ in Fig. 7 captures these ideas formally.

Definition 4.8 (Similarity). Let𝑔⊑ = 𝑐∗◦ℎ⊑ . A relation 𝑅 is called a simulation if it is a post-fixpoint
of 𝑔⊑ . We call the greatest fixpoint of 𝑔⊑ similarity and denote it by ⊑.

Let us illustrate similarity by means of an example.

Example 4.9. Recall the two client protocols for our mathematical server in Fig. 2 and Fig. 3,

which concerns states 𝑠0, 𝑠1, . . . and 𝑟0, 𝑟1, . . ., respectively. We can now prove that the protocol in

Fig. 3 can also connect to the server because it is a supertype of the protocol in Fig. 2. To do that,

we establish a simulation relation between the states of both client protocols. In Fig. 8, we display a

part of both session coalgebras side-by-side and indicate with dotted arrows the pairs that have

to be related by a simulation relation to show that these states are similar, that is, related by ⊑. It
should be noted that we simulate states from the second coalgebra by that of the first, that is, we

show 𝑠𝑘 ⊑ 𝑟𝑘 for the shown states. There is one exception to this, namely 𝑞int ⊑ 𝑞real.

𝑠2
!

𝑠3
?

𝑠0
⊕

𝑞int
int

𝑞real
real

𝑟2
!

𝑟3
?

𝑟4
⊕

· · ·

· · ·

· · ·

· · ·

⊒ ⊑ ⊑

⊑

Fig. 8. Example 4.9: Simulation for two clients of the mathematical server (indicated by dotted arrows)

The following proposition records some properties of and tight connections between the relations

that we introduced.

Proposition 4.10. Bisimilarity ∼ is an equivalence relation, duality ⊥ is symmetric, and similarity
⊑ is a preorder. Moreover, for all states 𝑥 , 𝑦, and 𝑧 of a session coalgebra, we have that
(1) 𝑥 ∼ 𝑦 iff 𝑥 ⊑ 𝑦 and 𝑦 ⊑ 𝑥 ;
(2) 𝑥 ⊥ 𝑦 and 𝑥 ⊥ 𝑧 implies 𝑦 ∼ 𝑧; and
(3) 𝑥 ⊥ 𝑦 and 𝑦 ∼ 𝑧 implies 𝑥 ⊥ 𝑧 .

The first claims, that bisimulation is an equivalence, duality is symmetric, and similarity is a

preorder, follows from a straightforward coinductive analysis.

To prove the rest of the proposition, we start with a technical lemma.

Lemma 4.11. If 𝑥 ∼ 𝑦 then 𝑥 is parallelizable if and only if 𝑦 is parallelizable.

Proof. Suppose 𝑥 is parallelizable. That means all pairs 𝑠, 𝑟 of states in ⟨𝑥⟩≫𝑐 are either bisimilar,

or one of 𝑠 or 𝑟 is an “un” state. Because bisimulation requires all transitions to be bisimilar, any

state in ⟨𝑦⟩≫𝑐 has a bisimilar state in ⟨𝑥⟩≫𝑐 . So, any 𝑎, 𝑏 in ⟨𝑦⟩≫𝑐 where op(𝑎) ≠ un and op(𝑏) ≠ un,

has 𝑎′, 𝑏′ in ⟨𝑥⟩≫𝑐 with 𝑎 ∼ 𝑎′ ∼ 𝑏′ ∼ 𝑏. Bisimulation is transitive, so 𝑎 ∼ 𝑏. Thus, 𝑦 is parallelizable.

The reverse case is analogous. □

Given a subtyping relation ≤, type equivalence is generally defined as the derived equivalence

relation 𝑥 ≡ 𝑦 iff 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 . We defined bisimulation separately from simulation, but it

coincides with this derived equivalence. This coincides with the claim that for any states 𝑥 and 𝑦,

𝑥 ∼ 𝑦 if and only if 𝑥 ⊑ 𝑦 and 𝑦 ⊑ 𝑥 .
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Proof of Prop. 4.10. Recall that bisimulation is symmetric, so if 𝑥 ∼ 𝑦 then 𝛿 (𝑥) (𝛼) ∼ 𝛿 (𝑦) (𝛼)
and 𝛿 (𝑦) (𝛼) ∼ 𝛿 (𝑥) (𝛼) for any 𝛼 ∈ 𝑑𝑜𝑚(𝑥). Using Lemma 4.11 in the case that op(𝑥) = op(𝑦) = un,

it’s easy to confirm that the bisimulation relation is a simulation. So, 𝑥 ∼ 𝑦 implies 𝑥 ⊑ 𝑦, but also

𝑦 ∼ 𝑥 , by symmetry, thus 𝑦 ⊑ 𝑥 .

Suppose 𝑥 ⊑ 𝑦 and 𝑦 ⊑ 𝑥 , which means that there are simulation relations 𝑅1 and 𝑅2 with

𝑥 𝑅1 𝑦 and 𝑦 𝑅2 𝑥 . It is straightforward to prove that the relation 𝑅 = 𝑅1 ∩ 𝑅
op

2
, where 𝑅

op

2
is

the dual relation, is a bisimulation relation. To this end, suppose that 𝑥1 𝑅 𝑦1, 𝑐 (𝑥1) = (𝑎, 𝑓 ) and
𝑐 (𝑦1) = (𝑏,𝑔). Let us consider first the case when 𝑎 = (bsc, 𝑑). Since 𝑥1 𝑅1 𝑦1, we necessarily

have 𝑏 = (bsc, 𝑒) with 𝑑 ≤ 𝑒 . Symmetrically, we also have 𝑦1 𝑅2 𝑥1 and thus 𝑒 ≤ 𝑑 . Then clearly

𝑥1 𝑔∼ (𝑅) 𝑦1 by definition. Second, we treat as the case where 𝑎 = (com, in) = 𝑏, which have to be

equal again because 𝑅1 (or 𝑅2) is a simulation. Since 𝑥1 𝑅1 𝑦1, we also have that 𝑓 (∗) 𝑅1 𝑔(∗) and
𝑓 (d) 𝑅1 𝑔(d). Symmetrically, we obtain 𝑔(∗) 𝑅2 𝑔(∗) and 𝑔(d) 𝑅2 𝑓 (d) from 𝑦1 𝑅2 𝑥1. Putting

these together, we thus have 𝑓 (∗) 𝑅 𝑔(∗) and 𝑓 (d) 𝑅 𝑔(d) and so 𝑥1 𝑔∼ (𝑅) 𝑦1. All the other cases
are analogous and 𝑅 is indeed a bisimulation, which implies that 𝑥 ∼ 𝑦.

The second claim is that 𝑥 ⊥ 𝑦 and 𝑥 ⊥ 𝑧 implies 𝑦 ∼ 𝑧. By definition of duality (Def. 4.4), we

have 𝜎 (𝑥) = 𝜎 (𝑦) and 𝜎 (𝑥) = 𝜎 (𝑧). Thus, 𝜎 (𝑦) = 𝜎 (𝑧). Duality of the transitions follow from a

coinductive analysis. Let 𝑓 = 𝛿 (𝑥), 𝑔 = 𝛿 (𝑦) and ℎ = 𝛿 (𝑧), then 𝑓 (𝛼) ⊥ 𝑔(𝑥) and 𝑓 (𝛼) ⊥ ℎ(𝛼)
for all 𝛼 ∈ 𝑑𝑜𝑚(𝑓 ) (which is equal to 𝑑𝑜𝑚(𝑔) and 𝑑𝑜𝑚(ℎ)). The coinductive hypothesis implies

𝑔(𝛼) ∼ ℎ(𝛼). Bisimilarity of 𝑦 and 𝑧 follows directly.

The third claim, that 𝑥 ⊥ 𝑦 and 𝑦 ∼ 𝑧 implies 𝑥 ⊥ 𝑧, is proven similarly. □

Property (1) of Prop. 4.10 unfortunately does not follow from the general principles established

by Hughes and Jacobs [32] because ℎ⊑ does not arise as a lifting induced by an order on the functor

𝐹 . The problem is that the relation 𝑅 occurs in ℎ⊑ (𝑅) both normally and dually, which forces us to

define the lifting ℎ⊑ and prove Prop. 4.10 manually.

4.5 Duality Functions
It is useful to have a function mapping any state 𝑥 to their dual, as long as duality is defined on 𝑥 .

Note that although there may be multiple states that are dual to 𝑥 , according to Prop. 4.10 all such

states are bisimilar, so it does not matter which one we designate as the dual of 𝑥 .

Definition 4.12. A partial function 𝑓 : 𝑋 → 𝑋 is called a duality function on session coalgebra

(𝑋, 𝑐) if for all 𝑥 ∈ 𝑋 we have

(1) If 𝜎 (𝑥) is defined, then 𝑓 (𝑥) ⊥ 𝑥

(2) If 𝜎 (𝑥) is undefined, then 𝑓 (𝑥) is also undefined.

Not each session coalgebra admits a duality function. However, we can close any coalgebra (𝑋, 𝑐)
under duality as such,

𝑋⊥ = {(𝑥, ↑) | 𝑥 ∈ 𝑋 } ∪ {(𝑥, ↓) | 𝑥 ∈ 𝑋, 𝜎 (𝑥) is defined}

where ↑ and ↓ are distinct, arbitrary objects used to distinguish between the states which should

have the same meaning as in 𝑋 , from those that should get a dual meaning. The coalgebra map

𝑐⊥ : 𝑋⊥ → 𝐹 (𝑋⊥) is defined as

𝑐⊥ (𝑥, ↑) = (𝜎 (𝑥), 𝛼 ↦→ (𝛿 (𝑥) (𝛼), ↑))

𝑐⊥ (𝑥, ↓) =
(
𝜎 (𝑥), 𝛼 ↦→

{
(𝛿 (𝑥) (𝛼), ↓) if 𝛼 ∈ dom𝐶 (𝑓 )
(𝛿 (𝑥) (𝛼), ↑) if 𝛼 ∈ dom𝐷 (𝑓 )

)
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The dual closure admits an almost trivial duality function 𝑓 : 𝑋⊥ → 𝑋⊥
.

𝑓 (𝑥, ↑) = (𝑥, ↓) if (𝑥, ↓) ∈ 𝑋⊥

𝑓 (𝑥, ↓) = (𝑥, ↑)

Proposition 4.13. Let (𝑋⊥, 𝑐⊥) be the dual closure of some session coalgebra, then (𝑥, ↑) ⊥ (𝑥, ↓)
for every state 𝑥 ∈ 𝑋 such that (𝑥, ↓) ∈ 𝑋⊥.

Proof. Using a coinductive reasoning, we have to show

𝜎⊥ (𝑥, ↑) = 𝜎⊥ (𝑥, ↓)
𝛿⊥ ((𝑥, ↑))(𝛼) ⊥ 𝛿⊥ ((𝑥, ↓))(𝛼) ∀𝛼 ∈ dom𝐶 (𝛿 ((𝑥, ↑)))
𝛿⊥ ((𝑥, ↑))(𝛽) ∼ 𝛿⊥ ((𝑥, ↓))(𝛽) ∀𝛽 ∈ dom𝐷 (𝛿 ((𝑥, ↑)))

The first claim follows by construction. For the second, note that 𝛿⊥ ((𝑥, ↑))(𝛼) = (𝛿 (𝑥) (𝛼), ↑) and
𝛿⊥ ((𝑥, ↓))(𝛼) = (𝛿 (𝑥) (𝛼), ↓), so the claim follows from the coinductive hypothesis. For the final

claim, we see that 𝛿⊥ ((𝑥, ↑))(𝛽) = (𝛿 (𝑥) (𝛽), ↑) and 𝛿⊥ ((𝑥, ↓))(𝛽) = (𝛿 (𝑥) (𝛽), ↑), so the two sides

are in fact equal. Bisimilarity is reflexive, thus concluding the coinductive proof. □

Since duality is symmetric, the above proposition suffices to conclude that 𝑓 is indeed a duality

function. Furthermore, it should be apparent that 𝑓 is in fact a computable function.

In following sections we will assume that session coalgebras under consideration have a comput-

able duality function, since we can always use the above procedure to construct one. In a slight

abuse of notation, we reuse the · operation to mean this assumed duality function on states, i.e., 𝑥

denotes the dual of 𝑥 .

4.6 Decidability
In a practical type checker, we need an algorithm to decide the relations defined above. In this

subsection we show an algorithm that computes the answer in finite time for a certain class of

types.

Definition 4.14. A coalgebra 𝑐 is finitely generated if ⟨𝑥⟩𝑐 is finite for all 𝑥 .

This restriction is not problematic for types, as the following lemma shows.

Lemma 4.15. The coalgebra of types (Type, 𝑐Type) is finitely generated.

Proof. The full proof is quite technical, so we give a sketch. Consider some 𝑇 ∈ Type, and the

coalgebra generated at that 𝑇 . Note that instead of substituting recursion variables 𝑋 at every

unfold, we can generate an equivalent coalgebra (modulo the name of each state) by defining

unfold (𝜇𝑋 .𝑈 ) = 𝑈 . Then, every non-recursive transition goes to a strictly smaller expression.

Simply removing the binder, without substituting anything for 𝑋 in𝑈 does mean that now 𝑋 is

free in 𝑈 . So, whenever we unfold a type (i.e., remove a binder), we keep a record of the bound

value (which, in this case, is 𝜇𝑋 .𝑈 ). Let 𝜁 denote this record, mapping variables to their bound

values (so, following the preceding example, we have 𝜁 (𝑋 ) = 𝜇𝑋 .𝑈 ), then we slightly augment the

transition function of the coalgebra of types.

𝛿 ′ (𝑈 ) (𝛼) =
{
𝜁 (𝑋 ) if 𝛿 (𝑈 ) (𝛼) = 𝑋 for some variable 𝑋

𝛿 (𝑈 ) (𝛼) otherwise

That is, whenever the original coalgebra of types definition calls for a transition to a variable 𝑋 ,

from some state𝑈 , we look up the value of 𝑋 in the record we kept, and point the transition to the

corresponding state. This state is guaranteed to have been seen previously, i.e., lie on the path from
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𝑇 to 𝑈 . Finally, there is only a finite number of transitions per state. Hence, the total number of

states reachable from 𝑇 is finite. □

To determine whether two states 𝑥 and 𝑦 are bisimilar, we need to find a bisimulation 𝑅 with

𝑥 𝑅 𝑦. We start with the simplest relation 𝑅 = {(𝑥,𝑦)}, and ask if this is a bisimulation.

First, we check that for all (𝑢,𝑤) ∈ 𝑅, 𝜎 (𝑢) = 𝜎 (𝑤), or in the case of bsc states that da(𝑢) ≤𝐷

da(𝑤) and da(𝑤) ≤𝐷 da(𝑢). If 𝜎 (𝑢) ≠ 𝜎 (𝑤) for any pair in 𝑅 we know that no superset of 𝑅 is a

bisimulation, and the algorithm rejects.

Second, we check the matching transitions. For every (𝑢,𝑤) ∈ 𝑅 and 𝛼 ∈ 𝑑𝑜𝑚(𝛿 (𝑢)) we check
whether (𝛿 (𝑢) (𝛼), 𝛿 (𝑤) (𝛼)) ∈ 𝑅. If we encounter a missing pair, we add it to 𝑅 and ask whether

this new relation is a bisimulation, i.e., return to the first step. If all destinations for matching

transitions are present in 𝑅, then 𝑅 is by construction a bisimulation for (𝑥,𝑦). Hence, 𝑥 ∼ 𝑦.

This algorithm tries to construct the smallest possible bisimulation containing (𝑥,𝑦), by only

adding strictly necessary pairs. If the algorithm rejects, there is no such bisimulation; hence, 𝑥 ≁ 𝑦.

Additionally, the algorithm only examines pairs in ⟨𝑥⟩𝑐 × ⟨𝑦⟩𝑐 . If there are finitely many of such

pairs, the algorithm will terminate in finite time

The above described algorithm can be suitably adapted to similarity and duality, which gives us

the following result.

Theorem 4.16. Bisimilarity, similarity, and duality of any states 𝑥 and 𝑦 are decidable if ⟨𝑥⟩𝑐 and
⟨𝑦⟩𝑐 are finite. Parallelizability of any state 𝑥 is decidable if ⟨𝑥⟩≫𝑐 (as in Definition 4.7) is finite.

Proof. We start with the decidability of bisimilarity.

A relation 𝑅 is a post-fixpoint of 𝑔∼ if (𝑎, 𝑏) ∈ 𝑔∼ (𝑅) for all (𝑎, 𝑏) ∈ 𝑅. This involves computing a

pre-image, which is, in general, not easy. Because we are not interested in pair 𝑔∼ (𝑅) that is not
in 𝑅, and because 𝑔∼ (𝑅) = 𝑐∗ (𝑓∼ (𝑅)), 𝑅 is a post-fixpoint if (𝑐 (𝑎), 𝑐 (𝑏)) ∈ 𝑓∼ (𝑅) for all (𝑎, 𝑏) ∈ 𝑅.

When 𝑅 is finite, the latter is decidable—either trivially or by the assumption that ≤𝐷 is decidable.

By assumption, there are only finitely many states to be transitioned to, so the algorithm de-

scribed above can only add finitely many pairs before reaching a relation that either already is a

bisimulation or can never be made into a bisimulation.

The decidability of parallelizability for a finite set is straightforward.

If𝑌 is finite, the set𝑌 ×𝑌 of all pairs is finite. We can enumerate all such pairs, and decide whether

it either is in the bisimilarity relation or contains a un state, in finite time. Once we encounter a

pair for which this does not hold, we know 𝑥 is not parallelizable. If we have checked all pairs and

not encountered such a counter-example, we know 𝑥 is parallelizable.

Each continuation is a transition, so for any state 𝑥 such that ⟨𝑥⟩𝑐 is finite, ⟨𝑥⟩≫𝑐 , i.e. the smallest

set that is closed under continuations and contains 𝑥 , is also finite. Thus, parallelizability of 𝑥 is

decidable.

Finally, the algorithm, and decidability proof, for duality and similarity are analogous to that for

bisimilarity. □

Corollary 4.17. Bisimilarity, similarity, duality and parallelizability are decidable for 𝑐Type.

Proof. The coalgebra (Type, 𝑐Type) is finitely generated, so Theorem 4.16 applies. □

4.7 Session Coalgebras as Type Equations and the Rational Fixed Point
We have seen that the coalgebra 𝑐Type is finitely generated, which means that every type𝑇 gives rise

to a finite subcoalgebra ⟨𝑇 ⟩𝑐Type that contains 𝑇 . All the examples of session coalgebras, apart from

𝑐Type, were however finite. In the theory of automata, there is a familiar correspondence between

finite deterministic automata and regular expressions. Thus, one may ask whether there is such
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𝑇end

un

Fig. 9. An alternative completed protocol

a correspondence between finite state session coalgebras and session types. The answer to this

question is not a definite “yes” but requires a bit of care.

Indeed, it is simple to provide an example of a session coalgebra that has no corresponding

session type, see Fig. 16. But there is more to be said. Coming back to language theory, the above

mentioned correspondence actually relates finite automata and regular languages with each other,

and uses this to establish the correspondence with regular expressions. This means that we have to

find an analogue to regular languages for session coalgebras.

In the theory of coalgebra, the correspondence of regular languages and regular expressions is

approached by relating the so-called rational fixed point of the functor for deterministic automata

to a coalgebra on the set of regular expressions [53]. To parallel this approach, we will thus have to

find a correspondence between the rational fixed point for our session coalgebra functor 𝐹 and

the coalgebra 𝑐Type. Let us begin by introducing the rational fixed point. We will use a simplified

definition [41], which works in our setting and makes the theory more elementary.

Definition 4.18. Let CoAlg
fg
(𝐹 ) be the category of finitely generated coalgebras, that is, the full

subcategory of CoAlg(𝐹 ) in which all coalgebras are finitely generated. The rational fixed point of
𝐹 is the final object (𝜌𝐹, 𝑟 ) in CoAlg

fg
(𝐹 ).

It should be noted that the rational fixed point does indeed exist in our case because the category

Set is locally finitely presentable [3] and the functor 𝐹 preserves filtered colimits [2]. Moreover,

every finite session coalgebra is of course finitely generated and thus an object in CoAlg
fg
(𝐹 ).

We can ask ourselves now whether the coalgebra on session types corresponds to the rational

fixed point, which can be seen as semantic domain for finitely generated session coalgebras and

thus taking the role similar to that of regular languages.

Unfortunately, this is not the case. Figure 9 depicts a session coalgebra that does not have a

syntactical equivalent; it consists of a state 𝑇end with 𝜎 (𝑇end) = un and 𝛿 (𝑇end) (∗) = 𝑇end.

Theorem 4.19. There is a unique homomorphism 𝑡 : (Type, 𝑐Type) → (𝜌𝐹, 𝑟 ) from the coalgebra of
types to the rational fixed point of 𝐹 . This homomorphism is not an isomorphism.

Proof. In Lemma 4.15, we proved that 𝑐Type is finitely generated and therefore finitely present-

able [41, 42]. This gives the unique homomorphism 𝑡 into the rational fixed point.

Suppose, towards a contradiction, that the homomorphism 𝑡 would have an inverse 𝑡−1. Then
for any finitely presentable coalgebra (𝑋, 𝑐) we get a homomorphism ℎ : 𝑋 → 𝜌𝐹 and thus a

homomorphism 𝑡−1 ◦ ℎ : 𝑋 → 𝜌𝐹 → Type. In Fig. 9, we give an example of a finite session

coalgebra that has no corresponding type, i.e., there is no homomorphism (𝑋, 𝑐) → (Type, 𝑐Type).
Therefore, 𝑡 cannot have an inverse. □

This result is disappointing, as session types are not in correspondence with finitely generated

session coalgebras. However, the proof also instructs us how we can remedy this problem. The

issue with the session coalgebra in Fig. 9 is that the un-state 𝑇end has a direct self-loop without

going through a pretype, which would be required in order to be able to associate a session type

with this state. It turns out that this is the only real obstacle and that we can obtain an inverse of

sorts of the homomorphism 𝑡 from Theorem 4.19, if we restrict to appropriate session coalgebras.

Theorem 4.20. Let 𝑐 : 𝑋 → 𝐹 (𝑋 ) be a finite session coalgebra. Suppose that for all 𝑥 ∈ 𝑋 , if
whenever 𝑐 (𝑥) = (un, 𝑓 ), then 𝑐 (𝑓 (∗)) = (com, 𝑝, 𝑓 ′) or 𝑐 (𝑓 (∗)) = (branch, 𝑝, 𝐿, 𝑓 ′). Then there is a
homomorphism ℎ : (𝑋, 𝑐) → (Type, 𝑐Type).
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Proof. We follow the usual idea of creating a finite system of type equations induced by the

states of 𝑐 and show that this system is solvable in Type [2]. The homomorphism then maps a state

to the corresponding solution.

Towards this, we will use type variables 𝑋𝑦 for every state 𝑦 ∈ 𝑋 , define metavariables 𝑇𝑦 that

represent 𝑦 as type equation, and a family of pretypes 𝑝𝑢 indexed by elements 𝑢 ∈ 𝐹 (𝑋 ). This
family 𝑝𝑢 of pretypes is defined as follows.

𝑝 (com,in,𝑓 ) = ?𝑋𝑓 (∗) . 𝑋𝑓 (𝑑 ) 𝑝 (com,out,𝑓 ) = !𝑋𝑓 (∗) . 𝑋𝑓 (𝑑 )

𝑝 (branch,in,𝐿,𝑓 ) = &{𝑙 : 𝑋𝑓 (𝑙 ) }𝑙∈𝐿 𝑝 (branch,out,𝐿,𝑓 ) = ⊕{𝑙 : 𝑋𝑓 (𝑙 ) }𝑙∈𝐿
For every state 𝑦 ∈ 𝑋 , we require the following equation to hold.

𝑇𝑦 =



lin 𝑝 (com,𝑝,𝑓 ) , 𝑐 (𝑦) = (com, 𝑝, 𝑓 )
lin 𝑝 (branch,𝑝,𝐿,𝑓 ) , 𝑐 (𝑦) = (branch, 𝑝, 𝐿, 𝑓 )
end, 𝑐 (𝑦) = (end, 𝑓 )
𝑑, 𝑐 (𝑦) = (bsc, 𝑑)
un 𝑝𝑐 (𝑓 (∗) ) , 𝑐 (𝑦) = (un, 𝑓 )

Note that the last case is well-defined because of the condition on the coalgebra 𝑐 . Moreover,

it is important to note that the variables only occur inside the pretypes 𝑝𝑢 , which makes their

occurrences contractive (or guarded). Therefore, we can solve the system of equations with types

𝑇𝑦 by putting 𝑇𝑦 = 𝜇𝑋𝑦 . 𝑇𝑦 and then repeatedly substituting 𝑇𝑦′ for all 𝑋𝑦′ with 𝑦′ ≠ 𝑦 in 𝑇𝑦 . This

repeated substitution terminates because each 𝑇𝑦′ binds one or more variables. That we get closed

and contractive types is thus ensured.

We can then define the map ℎ : 𝑋 → Type by ℎ(𝑦) = 𝑇𝑦 . That this is a homomorphism is easily

proven by using the system of equations:

𝑐Type (ℎ(𝑦)) = 𝑐
(
𝑇𝑦

)
=


𝑐Type (lin 𝑝 (com,out,𝑓 ) ), 𝑐 (𝑦) = (com, out, 𝑓 )
...

𝑐Type (un 𝑝𝑐 (𝑓 (∗) ) ), 𝑐 (𝑦) = (un, 𝑓 )

=


(com, out,

[
∗ ↦→ 𝑇𝑓 (∗) , 𝑑 ↦→ 𝑇𝑓 (∗)

]
), 𝑐 (𝑦) = (com, out, 𝑓 )

...

(un, [∗ ↦→ lin 𝑝𝑐 (𝑓 (∗) ) ]), 𝑐 (𝑦) = (un, 𝑓 )

=


(com, out, ℎ ◦ 𝑓 ), 𝑐 (𝑦) = (com, out, 𝑓 )
...

(un, ℎ ◦ 𝑓 ), 𝑐 (𝑦) = (un, 𝑓 )
= 𝐹 (ℎ) (𝑐 (𝑦))

As this holds for all 𝑦 ∈ 𝑋 , 𝑐Type ◦ ℎ = 𝐹 (ℎ) ◦ 𝑐 and ℎ is a homomorphism. □

Even though the homomorphism that we found in Theorem 4.20 seems canonical, it is not unique.

This is because types are considered equal only syntactically, up to 𝛼-equivalence, but uniqueness

would require that bisimilar types are equal. For instance, any closed type𝑇 is bisimilar to 𝜇𝑋 . 𝑇 for

any variable𝑋 but these are not syntactically equal. Clearly,ℎ could be turned into a homomorphism

𝑋 → Type/∼ to the quotient of Type by bisimilarity. This is a standard technique [41, 53] to express

the bisimulation proof principle that we have devised in Sec. 4.1 as a unique mapping property.
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Thus, Type/∼ with the coalgebra induced by the quotient [49] becomes final among appropriately

restricted session coalgebras.

Corollary 4.21. Let CoAlg𝑝
fg
(𝐹 ) be the full subcategory of CoAlg

fg
(𝐹 ) that consists of coalgebras

that fulfil the condition of Theorem 4.20. The bisimilarity quotient (Type/∼, 𝑐Type/∼) of (Type, 𝑐Type)
is final in CoAlg𝑝

fg
(𝐹 ).

Proof. We note that the quotient of a finitely generated coalgebra is also finitely generated [41].

Moreover, (Type/∼, 𝑐Type/∼) fulfils the condition and is therefore an object in CoAlg𝑝
fg
(𝐹 ). By

Theorem 4.20 and the above discussion, it is final in this category. □

Let us illustrate the constructed homomorphism into 𝑐Type in practice.

Example 4.22. We apply the method in the proof of Theorem 4.20 to the session coalgebra in

Fig. 14 on page 26. First of all, we have to represent the coalgebra as a system of type equations:

𝑇𝑈 = un ?𝑋𝑞 . 𝑋𝑈 𝑇𝑇 = lin ?𝑋𝑞 . 𝑋𝑈 𝑇𝑞 = int

𝑇𝑉 = un !𝑋𝑞 . 𝑋𝑉 𝑇𝑆 = lin !𝑋𝑞 . 𝑋𝑉

Next, we need to solve this system for every type by prefixing the equation with a fixed point

operator and then substituting for the unbound variables. For instance, we get for the state𝑈 the

following solution.

𝑇𝑈 = 𝜇𝑋𝑈 . 𝑇𝑈

= 𝜇𝑋𝑈 . un ?𝑋𝑞 . 𝑋𝑈

= 𝜇𝑋𝑈 . un ?𝑇𝑞 . 𝑋𝑈

= 𝜇𝑋𝑈 . un ?(𝜇𝑋𝑞 . int). 𝑋𝑈

This type is very generous in using fixed point operators. In the coalgebra Type/∼, this type would
be considered equal to

𝜇𝑋𝑈 . un ?int. 𝑋𝑈 ,

which is the type that we may intuitively derive from Fig. 14. The homomorphism ℎ : 𝑋 → Type/∼
assigns to every state 𝑥 of the coalgebra (the equivalence class of) the solution 𝑇𝑥 . In particular, we

have ℎ(𝑇 ) = lin ?int. 𝜇𝑋𝑈 . un ?int. 𝑋𝑈 .

Theorem 4.20 and Corollary 4.21 show that there is a correspondence between session types

(quotient by bisimilarity), finite session coalgebras (with an appropriate condition), and the rational

fixed point. This is similar to the trinity of regular expressions (quotient thereof), deterministic

automata, and regular languages. However, Theorem 4.20 also shows that this correspondence does

not work out fully because the rational fixed point is not in the category CoAlg𝑝
fg
(𝐹 ). We suspect

that the correspondence can be restored by altering the functor 𝐹 . More precisely, one would have

to provide a comonad, such that CoAlg𝑝
fg
(𝐹 ) is isomorphic to the category of coalgebras over that

comonad and then show that a rational fixed point exists in that category. Thus, the comonad

would encode the condition that we had to impose on 𝐹 -coalgebras in CoAlg𝑝
fg
(𝐹 ) and the rational

fixed point would be final among them. It seems that such a comonad can be easily obtained as

sub-comonad of the cofree comonad of 𝐹 but we shall not pursue this route further in the present

paper. For the time being, we content ourselves with the correspondence between certain session

coalgebras and session types as in Corollary 4.21.
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𝑃,𝑄 ::= 𝑥 ⟨𝑦⟩.𝑃 output 𝑦 on channel 𝑥 , continue as 𝑃

| 𝑥 (𝑦) .𝑃 bind input from channel 𝑥 to variable 𝑦, continue as 𝑃

| 𝑥 ▷ {𝑙𝑖 : 𝑃𝑖 }𝑖∈𝐼 offer choices 𝑙1, 𝑙2, . . ., continue as 𝑃 𝑗 (for some 𝑗 ∈ 𝐼 )

| 𝑥 ◁ 𝑙 .𝑃 select label 𝑙 , continue as 𝑃

| 𝑃 | 𝑄 parallel composition of 𝑃 and 𝑄

| !𝑃 replication

| 0 finished process

| (𝜈𝑥𝑦)𝑃 channel creation

Fig. 10. Syntax of processes

5 PROCESSES AND A TYPE SYSTEM BASED ON SESSION COALGEBRAS
Session types are meant to discipline the behaviour of the channels of an interacting process, so

as to ensure that prescribed protocols are executed as intended. Up to here, we have focused on

session types (i.e., their representation as session coalgebras and coinductively-defined relations on

them) without committing to a specific syntax for processes. This choice is on purpose: our goal is

to provide a truly syntax-independent justification for session types.

In this section, we introduce a syntax of processes and rely on session coalgebras to define

a session type system, similar to the one defined by Vasconcelos in [61]. Because our goal is to

precisely illustrate how session coalgebras (and their underpinning notions) arise in a concrete

formulation of the typing rules, our type system includes only a basic support for processes with

infinite behaviours and recursive session types—indeed, following [24], we consider processes with

replication (noted !𝑃 ) rather than with recursion. There is no fundamental difficulty in extending

our type system based on session coalgebras to match the expressive forms of recursive session

types defined in [61].

A note in terminology. In the following we often use ‘type’ to refer to the corresponding ‘state’

of the underlying session coalgebra. In our developments, both ‘state’ and ‘type’ can be used

interchangeably.

5.1 A Session 𝜋-calculus
The 𝜋-calculus is a formal model of interactive computation in which processes exchange messages

along channels (or names) [43, 51]. As such, it is an abstract framework in which key features such

as name mobility, (message-passing) concurrency, non-determinism, synchronous communication,

and infinite behaviour have rigorous syntactic representations and precise operational meaning.

We consider a session 𝜋-calculus, i.e., a variant of the 𝜋-calculus whose operators are tailored

to the protocols expressed by session types. We assume base sets of variables, ranged over by

𝑥,𝑦, 𝑧, 𝑣, . . ., and labels L, ranged over by 𝑙, 𝑙 ′, . . .. The syntax of processes 𝑃,𝑄, . . . is based on [24]

and [61] and given by the grammar in Fig. 10. We discuss the salient aspects of the syntax.

• A process 𝑥 ⟨𝑦⟩.𝑃 denotes the output of channel 𝑦 along channel 𝑥 , which precedes the

execution of 𝑃 . Dually, a process 𝑥 (𝑧).𝑃 denotes the input of a value 𝑣 along channel 𝑥 , which

precedes the execution of process 𝑃 [𝑦/𝑧], i.e., the process 𝑃 in which all free occurrences of

𝑧 have been substituted by 𝑦.

• Processes 𝑥 ▷ {𝑙𝑖 : 𝑃𝑖 }𝑖∈𝐼 and 𝑥 ◁ 𝑙 .𝑃 implement a labelled choice mechanism. Given a

finite index set 𝐼 , the branching process 𝑥 ▷ {𝑙𝑖 : 𝑃𝑖 }𝑖∈𝐼 denotes an external choice: the

reception of a label 𝑙 𝑗 (with 𝑗 ∈ 𝐼 ) along channel 𝑥 precedes the execution of the continuation

𝑃 𝑗 . The selection process 𝑥 ◁ 𝑙 .𝑃 denotes an internal choice; it is meant to interact with a

complementary branching.
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Reduction
(𝜈𝑥𝑦) (𝑥 ⟨𝑣⟩.𝑃 | 𝑦 (𝑧).𝑄 | 𝑅) −→ (𝜈𝑥𝑦) (𝑃 | 𝑄 [𝑣/𝑧] | 𝑅) [r-com]

(𝜈𝑥𝑦) (𝑥 ◁ 𝑙 𝑗 .𝑃 | 𝑦 ▷ {𝑙𝑖 : 𝑄𝑖 }𝑖∈𝐼 | 𝑅) −→ (𝜈𝑥𝑦) (𝑃 | 𝑄 𝑗 | 𝑅) ( 𝑗 ∈ 𝐼 ) [r-sync]

𝑃 −→ 𝑄

(𝜈𝑥𝑦)𝑃 −→ (𝜈𝑥𝑦)𝑄
𝑃 −→ 𝑄

𝑃 | 𝑅 −→ 𝑄 | 𝑅 [r-res][r-par]

𝑃 ≡ 𝑃 ′ 𝑃 ′ −→ 𝑄 ′ 𝑄 ′ ≡ 𝑄

𝑃 −→ 𝑄
[r-cong]

Structural congruence
Parallel composition:
𝑃 | 𝑄 ≡ 𝑄 | 𝑃 (𝑃 | 𝑄) | 𝑅 ≡ 𝑃 | (𝑄 | 𝑅) 𝑃 | 0 ≡ 𝑃 !𝑃 ≡ 𝑃 |!𝑃

Scope restriction:
(𝜈𝑥𝑦) (𝜈𝑣𝑤)𝑃 ≡ (𝜈𝑣𝑤) (𝜈𝑥𝑦)𝑃 (𝜈𝑥𝑦)0 ≡ 0 (𝜈𝑥𝑦)𝑃 ≡ (𝜈𝑦𝑥)𝑃
(𝜈𝑥𝑦) (𝑃 | 𝑄) ≡ ((𝜈𝑥𝑦)𝑃) | 𝑄 if 𝑥 and 𝑦 not free in 𝑄

Fig. 11. Reduction semantics

• Given processes 𝑃 and 𝑄 , process 𝑃 | 𝑄 denotes their parallel composition, which enables

their simultaneous execution.

• The process !𝑃 , the replication of 𝑃 , denotes the composition of infinite copies of 𝑃 running

in parallel, i.e., 𝑃 | 𝑃 | · · · .
• Process 0 denotes inaction.
• Process (𝜈𝑥𝑦)𝑃 denotes a restriction operator that declares 𝑥 and 𝑦 as co-variables, i.e., as
complementary endpoints of the same channel, with scope 𝑃 . This construct is arguably the

main difference with respect to usual presentations of the 𝜋-calculus.

Our process syntax can be seen as a variant of that in [24] with (co)variables and restriction as

in [61]. Binding occurrences of names are 𝑧 in 𝑥 (𝑧).𝑃 and both 𝑥 and 𝑦 in (𝜈𝑥𝑦)𝑃 .
The operational semantics for processes is defined as a reduction relation, denoted −→, by relying

on a notion of structural congruence on processes, denoted ≡. Figure 11 defines these two notions.

Intuitively, two processes are structurally congruent if they are identical in behaviour, but not

necessarily in structure. It is the smallest congruence relation satisfying the axioms in Fig. 11

(bottom), which formalise expected equalities for parallel composition, replication, and restriction.

We say a process 𝑃 reduces to𝑄 , written 𝑃 −→ 𝑄 , when there is a single execution step yielding𝑄

from 𝑃 . We comment on the rules in Fig. 11 (top). Following [61], r-com formalises the exchange of

a value over a channel formed by two covariables. Similarly, r-sync formalises the synchronisation

between a branching and a selection that realises the labelled choice. Rules r-res and r-par are

contextual rules, which allow reduction to proceed under restriction and parallel composition.

Finally, Rule r-cong says that reduction is closed under structurally congruence: we can use ≡ to

promote interactions that match the structure of the rules above.

5.2 Typing Rules
Let𝑇,𝑈 ,𝑉 , . . . denote states of some fixed, but arbitrary, session coalgebra (𝑋, 𝑐) (cf. Definition 3.2).

Variables are associated with these states in a context Γ, as described by Γ ::= ∅ | Γ, 𝑥 : 𝑇 . Notice

that the use of Γ, 𝑥 : 𝑇 carries the assumption that 𝑥 is not in Γ. A context is an unordered, finite set

of pairs, that may have at most one pair (𝑥,𝑇 ) for each variable 𝑥 . A context is thus isomorphic to a

(partial) function from a finite set of variables to the coalgebra states that represent their types. We
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∅ = ∅ ◦ ∅ Γ = Γ1 ◦ Γ2 un(𝑇 )
Γ, 𝑥 : 𝑇 = (Γ1, 𝑥 : 𝑇 ) ◦ (Γ2, 𝑥 : 𝑇 )

Γ = Γ1 ◦ Γ2
Γ, 𝑥 : 𝑇 = (Γ1, 𝑥 : 𝑇 ) ◦ Γ2

Γ = Γ1 ◦ Γ2
Γ, 𝑥 : 𝑇 = Γ1 ◦ (Γ2, 𝑥 : 𝑇 )

Fig. 12. Context Split

un(Γ)
Γ ⊢ 0

Γ, 𝑥 : 𝑇,𝑦 : 𝑈 ⊢ 𝑃 𝑇 ⊥ 𝑈

Γ ⊢ (𝜈𝑥𝑦)𝑃 [T-Inact][T-Res]

Γ1 ⊢ 𝑃 Γ2 ⊢ 𝑄
Γ1 ◦ Γ2 ⊢ 𝑃 | 𝑄

Γ ⊢ 𝑃 un(Γ)
Γ ⊢ !𝑃 [T-Par][T-Rep]

𝑐 (𝑇 ) = (?, 𝑓 ) Γ, 𝑦 : 𝑈 , 𝑥 : 𝑓 (∗) ⊢ 𝑃 𝑓 (d) ⊑ 𝑈

Γ, 𝑥 : 𝑇 ⊢ 𝑥 (𝑦) .𝑃 [T-In]

𝑐 (𝑇 ) = (!, 𝑓 ) Γ, 𝑥 : 𝑓 (∗) ⊢ 𝑃 𝑈 ⊑ 𝑓 (d)
Γ, 𝑥 : 𝑇,𝑦 : 𝑈 ⊢ 𝑥 ⟨𝑦⟩.𝑃 [T-Out]

𝑐 (𝑇 ) = (&, 𝐿1, 𝑓 ) 𝐿1 ⊆ 𝐿2 Γ, 𝑥 : 𝑓 (𝑙) ⊢ 𝑃𝑙 ∀𝑙 ∈ 𝐿1

Γ, 𝑥 : 𝑇 ⊢ 𝑥 ▷ {𝑙 : 𝑃𝑙 }𝑙∈𝐿2
[T-Branch]

𝑐 (𝑇 ) = (⊕, 𝐿, 𝑓 ) Γ, 𝑥 : 𝑓 (𝑙) ⊢ 𝑃𝑙 𝑙 ∈ 𝐿

Γ, 𝑥 : 𝑇 ⊢ 𝑥 ◁ 𝑙 .𝑃𝑙
[T-Sel]

𝑐 (𝑇 ) = (un, 𝑓 ) par(𝑇 ) Γ, 𝑥 : 𝑓 (∗) ⊢ 𝑃
Γ, 𝑥 : 𝑇 ⊢ 𝑃 [T-Unpack]

Fig. 13. Declarative Typing Rules

use Γ to denote this isomorphic function as well: Γ(𝑥) = 𝑇 if (𝑥,𝑇 ) ∈ Γ. The domain of a context is

defined accordingly.

We know un states are unrestricted, but they are not the only ones.

Definition 5.1. A state is unrestricted, written un(𝑇 ), if its operation is un, end, or bsc. A context

is unrestricted, written un(Γ), if all states in Γ are unrestricted, i.e., if (𝑥,𝑇 ) ∈ Γ implies un(𝑇 ). A
state is linear, written lin(𝑇 ), if it is not unrestricted. A context is linear, if all its states are linear.

A context Γ may be split into two parts Γ1 and Γ2, such that the linear states are strictly divided

between Γ1 and Γ2, but unrestricted states can be copied. Following [61], context split is a ternary

relation, defined by the axioms in Fig. 12. We may write Γ1 ◦ Γ2 to refer to a context Γ for which

Γ = Γ1 ◦ Γ2 is in the context split relation. Such a context is not necessarily defined for any given

contexts; we implicitly assume its existence when writing Γ1 ◦ Γ2. Otherwise, Γ, 𝑥 : 𝑇 would have

two pairs with 𝑥 , which is not allowed.

The type system considers judgments of the form Γ ⊢ 𝑃 , and is defined by the rules in Fig. 13. A

process 𝑃 is well-formed, under a context Γ, if there is some inference tree whose root is Γ ⊢ 𝑃 and

whose nodes are all valid instantiations of these typing rules. As T-Inact is the only rule that does

not depend on the correctness of another process, it forms the leaves of such trees.

We discuss the typing rules, which can be conveniently read keeping in mind the notations

introduced in Def. 3.2 and Prop. 3.4. Rule T-Inact ensures that all linear channels in the context

are interacted with until the type becomes unrestricted. If our context contains a variable 𝑥 of type

?int, then the process is required to read an int from it. Thus, 𝑥 : ?int. ⊬ 0. In contrast, process
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𝑥 (𝑧) .0 is well-formed for the same context, using Rules T-Inact and T-In:

𝑥 : end, 𝑧 : int ⊢ 0
𝑥 : ?int ⊢ 𝑥 (𝑧).0

Rule T-Res creates a channel by binding together two covariables 𝑥 and 𝑦, of dual type. Rule T-

Par causes unrestricted channels to be copied and linear channels to get split between composite

processes, ensuring the latter occur in only a single process (cf. Fig. 12). Rule T-Rep handles the

replicated process !𝑃 , which denotes an infinite composition of copies of process 𝑃 ; hence, a

replicated process can only use an unrestricted context.

Together, Rules T-Par and T-Res allow us to introduce new co-variables, with new types, and

distribute them. But, only unrestricted types may be copied. Notice that a process does not specify

which types to give the newly bound variables.

𝑣 : int ⊢ (𝜈𝑥𝑦) 𝑥 (𝑧).0 | 𝑦⟨𝑣⟩.0
𝑥 : 𝜇𝑋 . un ?int. 𝑋 ⊢ 𝑥 (𝑧).0 | 𝑥 (𝑧).0

𝑥 :?int ⊬ 𝑥 (𝑧).0 | 𝑥 (𝑧).0
Each action on a channel has its own rule: Rule T-In handles input, binding the channel 𝑥 to

the continuation type and 𝑦 to some supertype of the received type. Rule T-Out handles output,

which requires the sent variable to have a subtype of whatever type the channel expects to send.

Rule T-Branch handles external choice, where the process needs to offer at least all choices the

type describes, coupled with processes that are correctly typed under the respective continuation

types. Rule T-Sel only checks whether the single label that was chosen by the process is a valid

option, and if the rest of the process is correct under the continuation type. These rules are only

specified for linear states; Rule T-Unpack allows a ‘un’ state to be used as if it was the underlying

type, as long as it is parallelizable (cf. Def. 4.6).

5.3 Properties of Well-Formed Processes
For well-formed processes, the type system guarantees that:

• If the process terminates, then all linear sessions were completed.

• If a process reads a value from a channel, then the value has the type specified by the channel’s

session type. If a process receives a label, then it is one of the labels specified by the channel’s

session type.

We establish a standard type preservation result, which rests upon two auxiliary properties:

substitution and subject congruence. Furthermore, substitution preserves the height of inference

trees.

Lemma 5.2 (Substitution). If𝑈 ⊑ 𝑇 and (𝑦,𝑉 ) ∉ Γ and Γ, 𝑥 : 𝑇 ⊢ 𝑃 as shown by some inference
tree of height 𝑛 then Γ, 𝑦 : 𝑈 ⊢ 𝑃 [𝑦/𝑥] can be shown by an inference tree of height 𝑛.

Proof. By induction on the derivation of Γ, 𝑥 : 𝑇 ⊢ 𝑃 , with a case analysis on the last typing

rule used, exploiting the fact that ⊑ is a pre-order (Proposition 4.10) and therefore transitive. The

case analysis constructs an inference tree of the conclusion by simply copying the rules from the

premisse inference tree, only changing the concrete types and processes, so the transformation is

indeed height-preserving. □

Lemma 5.3 (Subject Congruence). If Γ ⊢ 𝑃 and 𝑃 ≡ 𝑄 then Γ ⊢ 𝑄 .

Proof. By induction on the derivation of 𝑃 ≡ 𝑄 , with a case analysis on the last axiom used. □
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Theorem 5.4 (Type Preservation). If Γ ⊢ 𝑃 and 𝑃 −→ 𝑄 then Γ ⊢ 𝑄 .

Proof. By induction on the derivation of 𝑃 −→ 𝑄 , with a case analysis on the last applied rule,

using Lemma 5.2, Lemma 5.3, and inversion principles derived from the assumption Γ ⊢ 𝑃—all rules,
except Rule T-Unpack, are syntax-directed, but ambiguities can be avoided by the conditions on

types. □

In Sec. 4, we defined simulation through the intuition of subtyping as substitutability in one

direction. The substitution lemma tells us this is indeed allowed for simulated types.

Theorem 5.5. The following, more common, rule is admissible from the rules in Fig. 13.

Γ, 𝑥 : 𝑇 ⊢ 𝑃 𝑈 ⊑ 𝑇

Γ, 𝑥 : 𝑈 ⊢ 𝑃

Proof. Direct consequence of Lemma 5.2. □

That is, we could add the rule as an axiom, without changing the set of typable processes. As a

corollary, bisimulation of states implies the states are equivalent with respect to the type system,

in a height-preserving fashion.

Corollary 5.6. For all bisimilar types 𝑇 ∼ 𝑈 , contexts Γ and processes 𝑃 , it holds that Γ, 𝑥 : 𝑇 ⊢ 𝑃
can be shown by some inference tree of height 𝑛 if and only if Γ, 𝑥 : 𝑈 ⊢ 𝑃 can be shown by an inference
tree of height 𝑛.

Proof. If 𝑇 ∼ 𝑈 , then by Lemma 4.11 we have 𝑇 ⊑ 𝑈 and𝑈 ⊑ 𝑇 , the rest follows by Lemma 5.2.

□

5.4 Examples
To illustrate unrestricted behaviours and the T-Unpack rule, we first consider the process

𝑃0 = !(𝑥 (𝑦).𝑧⟨𝑦⟩.0)

𝑃0 is an unrestricted forwarder: it represents arbitrary copies of a process that first inputs a value

𝑦 on 𝑥 , which is then sent along 𝑧. Clearly, these are two unrestricted behaviours that determine

separate protocols. Suppose the exchanged value is of type int, then the protocols can be specified

using the session coalgebra in Fig. 14.

𝑈
un

𝑉
un

𝑆
!

𝑇
?

𝑞
int

Fig. 14. Session coalgebra for 𝑃0

We have the following typing derivation for 𝑥 (𝑦).𝑧⟨𝑦⟩.0:
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un(𝑥 : 𝑈 , 𝑧 : 𝑉 )
T-Inact

𝑥 : 𝑈 , 𝑧 : 𝑉 ⊢ 0
T-Out

𝑥 : 𝑈 , 𝑧 : 𝑆,𝑦 : int ⊢ 𝑧⟨𝑦⟩.0 par(𝑉 )
T-Unpack

𝑥 : 𝑈 , 𝑧 : 𝑉 ,𝑦 : int ⊢ 𝑧⟨𝑦⟩.0 int ⊑ int
T-In

𝑥 : 𝑇, 𝑧 : 𝑉 ⊢ 𝑥 (𝑦).𝑧⟨𝑦⟩.0 par(𝑈 )
T-Unpack

𝑥 : 𝑈 , 𝑧 : 𝑉 ⊢ 𝑥 (𝑦).𝑧⟨𝑦⟩.0
Note that the shift from 𝑥 : 𝑈 to 𝑥 : 𝑇 (and from 𝑧 : 𝑉 to 𝑧 : 𝑆) is justified by applications of

Rule T-Unpack. This is a silent rule on processes—only the type context changes. Their associated

premise holds easily by Def. 4.6 and Def. 4.7. The derivation for 𝑃0 finishes with an application of

Rule T-Rep:

...

𝑥 : 𝑈 , 𝑧 : 𝑉 ⊢ 𝑥 (𝑦).𝑧⟨𝑦⟩.0 un(𝑥 : 𝑈 , 𝑧 : 𝑉 )
T-Rep

𝑥 : 𝑈 , 𝑧 : 𝑉 ⊢ !𝑥 (𝑦).𝑧⟨𝑦⟩.0

Consider now the process

𝑃1 = 𝑥 ◁ 𝑎.𝑥 (𝑦).𝑧⟨𝑦⟩.𝑥 ◁ 𝑏.0
Clearly, 𝑃1 implements three different actions on 𝑥 : first a selection, then an input of a channel 𝑦,

and finally another selection. Before the second selection, the output on 𝑧 forwards 𝑦.

Rather than considering a sequential protocol involving the three actions on 𝑥 , we will consider

the two selections on 𝑥 as indicating two independent branches of the same protocol, as specified

by the session coalgebra in Fig. 15.

𝑇
⊕

𝐴
?

𝐵
end

𝐼
int

𝑅
real

𝑈
!

𝐶
end

a
b ⊑

Fig. 15. Session coalgebra for process 𝑃1

Accordingly, we have the following typing derivation for 𝑃1:

un(𝑧 : 𝐶, 𝑥 : 𝐵)
T-Inact

𝑧 : 𝐶, 𝑥 : 𝐵 ⊢ 0
T-Sel

𝑧 : 𝐶, 𝑥 : 𝑇 ⊢ 𝑥 ◁ 𝑏.0 int ⊑ int
T-Out

𝑧 : 𝑈 , 𝑥 : 𝑇,𝑦 : 𝑅 ⊢ 𝑧⟨𝑦⟩.𝑥 ◁ 𝑏.0 int ⊑ real
T-In

𝑧 : 𝑈 , 𝑥 : 𝐴 ⊢ 𝑥 (𝑦).𝑧⟨𝑦⟩.𝑥 ◁ 𝑏.0
T-Sel

𝑧 : 𝑈 , 𝑥 : 𝑇 ⊢ 𝑥 ◁ 𝑎.𝑥 (𝑦).𝑧⟨𝑦⟩.𝑥 ◁ 𝑏.0
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Recall the alternative completed protocol 𝑇end of Fig. 9. Just like regular end, 𝑇end allows no

interactions on the channel, but it does not cause a “un” type to be unparallelizable. The following

example illustrates a more complex session coalgebra that uses 𝑇end, here called 𝑞2.

𝑇
un

𝑞1
?

𝑞2
un

𝑞3
int

Fig. 16. Session coalgebra using an alternative completed protocol

Fig. 16 describes a parallelizable unrestricted state𝑇 such that each copy of a channel in state𝑇 can

only do a single receive. However, because it is unrestricted, we can still copy the channel across

threads and read a value per copy. We can even read infinitely many values through replication.

𝑥 : 𝑇 ⊬ 𝑥 (𝑦1).𝑥 (𝑦2).𝑥 (𝑦3).0
𝑥 : 𝑇 ⊢ 𝑥 (𝑦1).0 | 𝑥 (𝑦2).0 | 𝑥 (𝑦3).0
𝑥 : 𝑇 ⊢ !(𝑥 (𝑦).0)

Such a structure might be interesting in combination with session delegation. Figure 17 takes

the type of the previous example, and replaces int by the session 𝑈 = !int. ?bool. end as the

type to be communicated over the unrestricted channel. The unrestricted channel still allows

𝑇
un

𝑞1
?

𝑞2
un

𝑈
!

𝑞4
?

𝑞5
end

𝑞6
int

𝑞7
bool

Fig. 17. Session coalgebra using session delegation and an alternative completed protocol

at most one read per thread, but now each such read establishes a linear session of type 𝑈 . Let

𝑃𝑖 = 𝑦𝑖 ⟨𝑧𝑖⟩.𝑦𝑖 (𝑏𝑖 ).0 be a family of processes that each use a single channel of type𝑈 , then

𝑦𝑖 : 𝑈 , 𝑧𝑖 : int ⊢ 𝑃𝑖

We can use a channel of type 𝑇 to run arbitrarily many instances of 𝑃𝑖 in parallel.

𝑥 : 𝑇, 𝑧1 : int, 𝑧2 : int, 𝑧3 : int ⊢ 𝑥 (𝑦1).𝑃1 | 𝑥 (𝑦2).𝑃2 | 𝑥 (𝑦3).𝑃3
𝑥 : 𝑇, 𝑧0 : int ⊢ !(𝑥 (𝑦0).𝑃0)

However, we still cannot use the channel to create multiple sessions of type𝑈 in a single thread.

For any context Γ and process 𝑄 , we have

Γ, 𝑥 : 𝑇 ⊬ 𝑥 (𝑦1).𝑥 (𝑦2).𝑄
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Γ ⊢ 0; Γ Γ1 ⊢ 𝑃 ; Γ2 Γ1 = Γ2
Γ1 ⊢ !𝑃 ; Γ2

[A-Inact][A-Rep]

Γ1 ⊢ 𝑃 ; Γ2 Γ2 ⊢ 𝑄 ; Γ3
Γ1 ⊢ 𝑃 | 𝑄 ; Γ3

Γ1, 𝑥 : 𝑇,𝑦 : 𝑇 ⊢ 𝑃 ; Γ2
Γ1 ⊢ (𝜈𝑥𝑦 : 𝑇 )𝑃 ; Γ2 ÷ {𝑥,𝑦} [A-Par][A-Res]

𝑐 (𝑇 ) = (?, 𝑓 ) 𝑓 (d) ⊑ 𝑈 Γ1, 𝑦 : 𝑈 , 𝑥 : 𝑓 (∗) ⊢ 𝑃 ; Γ2
Γ1, 𝑥 : 𝑇 ⊢ 𝑥 (𝑦 : 𝑈 ).𝑃 ; Γ2 ÷ {𝑥,𝑦} [A-In]

𝑐 (𝑇 ) = (!, 𝑓 ) 𝑈 ⊑ 𝑓 (d) Γ1, 𝑥 : 𝑓 (∗) ⊢ 𝑃 ; Γ2
Γ1, 𝑥 : 𝑇,𝑦 : 𝑈 ⊢ 𝑥 ⟨𝑦⟩.𝑃 ; Γ2 ÷ {𝑥} [A-Out]

[A-Branch]

𝑐 (𝑇 ) = (&, 𝐿1, 𝑓 ) 𝐿1 ⊆ 𝐿2 Γ1, 𝑥 : 𝑓 (𝑙) ⊢ 𝑃𝑙 ; Γ𝑙 Γ2 = Γ𝑙 ÷ {𝑥} ∀𝑙 ∈ 𝐿2

Γ1, 𝑥 : 𝑇 ⊢ 𝑥 ▷ {𝑙 : 𝑃𝑙 }𝑙∈𝐿2 ; Γ2
𝑐 (𝑇 ) = (⊕, 𝐿, 𝑓 ) Γ1, 𝑥 : 𝑓 (𝑙) ⊢ 𝑃𝑙 ; Γ2 𝑙 ∈ 𝐿

Γ1, 𝑥 : 𝑇 ⊢ 𝑥 ◁ 𝑙 .𝑃𝑙 ; Γ2 ÷ {𝑥} [A-Sel]

𝑐 (𝑇 ) = (un, 𝑓 ) par(𝑇 ) Γ1, 𝑥 : 𝑓 (∗) ⊢ 𝑃 ; Γ2
Γ1, 𝑥 : 𝑇 ⊢ 𝑃 ; (Γ2 ÷ {𝑥}), 𝑥 : 𝑇

[A-Unpack]

Fig. 18. Algorithmic Type Checking Rules

6 ALGORITHMIC TYPE CHECKING
As observed by Vasconcelos [61], the typing rules describe what well-formed processes look like,

but do not directly allow us to decide whether an arbitrary process is well-formed or not. This is

because, beforehand, we do not know:

(1) Which type to introduce in reading (Rule T-In) or scope restriction (Rule T-Res), or

(2) How to split the context among processes in parallel composition (Rule T-Par).

We closely follow Vasconcelos [61] to address these issues. Rather than trying to infer the

introduced types, we augment the language of processes in Fig. 10 with type annotations:

𝑃 ::= . . . | (𝜈𝑥𝑦 : 𝑇 ) 𝑃 | 𝑥 (𝑦 : 𝑇 ).𝑃
Recall that we assumed all session coalgebras we work with come equipped with a duality function,

so we only need to annotate one type for scope restrictions. That is, in writing (𝜈𝑥𝑦 : 𝑇 ) 𝑃 we

assume that𝑇 is the type of the first variable, 𝑥 , and that its dual𝑇 is the type of the second variable,

𝑦. Other productions are kept unchanged.

The key idea to circumvent splitting is that a process 𝑃 | 𝑄 is checked as follows: we first pass

the entire context to 𝑃 , keeping track of all linear variables used and unused; then, we remove

the used linear variables from the context given to 𝑄 . To do this, we consider rules of the form

Γ1 ⊢ 𝑃 ; Γ2, where Γ1 and 𝑃 are the input to the algorithm and Γ2 is the output: in an execution, Γ2 is
the subset of Γ1 containing only those variables which had unrestricted types or were not used in 𝑃 .

We say subset because we want these variables, if present, to have the same type in Γ2 as in Γ1.
Fig. 18 lists the algorithmic versions of the typing rules. Rule A-Par, for example, checks parallel

processes as just described. By construction, Γ2 is one part of the context split required to instantiate
Rule T-Par. The linear variables of the other part is exactly those which are present in Γ1 but not in
Γ2. This change in A-Par requires adjusting the other rules. Firstly, we need the algorithm to accept
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Γ ÷ ∅ = Γ
Γ1 ÷ 𝐹 = Γ2, 𝑥 : 𝑇 un(𝑇 )

Γ1 ÷ (𝐹, 𝑥) = Γ2

Γ1 ÷ 𝐹 = Γ2 𝑥 ∉ 𝑑𝑜𝑚(Γ2)
Γ1 ÷ (𝐹, 𝑥) = Γ2

Fig. 19. Context Difference

even when we do not fully complete all sessions of Γ1 in 𝑃 . We do this by unconditionally accepting

the terminated process. Note that acceptance of the algorithm now only implies well-formedness if

the returned context is unrestricted.

Secondly, the algorithm needs to remove linear variables from the output as we use them. We do

not, however, want to remove any variable that has a linear type, as that would allow us to accept

processes which do not complete all linear sessions. Thus, we introduce the context difference

operator ÷ in Fig. 19. We write Γ ÷ {𝑥} to denote the context of all variable/type pairs in Γ minus a

potential pair including 𝑥 , but is only defined if (𝑥,𝑇 ) ∈ Γ implies that 𝑇 is unrestricted.

We elaborate on Rule A-Branch; the algorithm is called once for every branch, yielding a context

Γ𝑙 each time. Excluding 𝑥 , each branch must use the exact same set of linear variables. Thus, we

require that all these contexts are equal up to a potential (𝑥,𝑈𝑙 ) pair. Specifically, there is some Γ2
such that Γ2 = Γ𝑙 ÷ {𝑥} for any 𝑙 ∈ 𝐿2, this Γ2 is the output context.
To motivate this, consider a type 𝑇 = &{𝑎 : 𝑇𝑢𝑛, 𝑏 : end}, where 𝑇𝑢𝑛 is some unrestricted type

distinct from end, and some process 𝑃 = 𝑥 ▷ {𝑎 : 0, 𝑏 : 0}. Let Γ be some unrestricted context, 0 is
well-formed for both Γ, 𝑥 : 𝑇𝑢𝑛 and Γ, 𝑥 : end; the algorithm agrees.

Γ, 𝑥 : 𝑇𝑢𝑛 ⊢ 0 ; (Γ, 𝑥 : 𝑇𝑢𝑛)
Γ, 𝑥 : end ⊢ 0 ; (Γ, 𝑥 : end)

The resulting contexts are not equal. 𝑃 is well-formed for Γ, so we have to allow 𝑥 to have different

types in the output of different branches in a complete algorithm. Rules A-In, A-Out, and A-Sel

do not have multiple branches to check, but follow similar ideas. When introducing a new variable,

either through a read or scope restriction, the new variable is also removed from the output. Rule A-

Unpack only unpacks unrestricted types. We want those to have the same type in the input as in

the output, so we remove the variable and add a pair with the original type.

Take, for example, the process

𝑥 : ?int, 𝑦 : ?int ⊢ 𝑥 (𝑧1).0 | 𝑦 (𝑧2).0

The variables are split correctly, and both split contexts are unrestricted when the process is

completed, thus it is well-formed.

If, on the other hand, the left process did not complete the linear session, then the context

difference would not have been defined. Take one such process:

𝑥 : ?int.?int, 𝑦 : ?int ⊬ 𝑥 (𝑧1) .0 | 𝑦 (𝑧2).0

We succeed in checking the terminated process of the left part.

𝑥 : ?int, 𝑦 : ?int ⊢ 0 ; (𝑥 : ?int, 𝑦 : ?int)

But 𝑥 has a linear type in the output. (𝑥 : ?int, 𝑦 : ?int) ÷ {𝑥} is undefined, so the algorithm rejects

this input entirely. The process was indeed not well-formed, and no further parallel processes could

fix it; the rejection is expected.

For each process and context there is at most one applicable algorithmic rule: which one is

directed by the process syntax and unrestrictedness of a channel being interacted with.
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Under the same assumptions as before (i.e., the session coalgebra describing the types is finitely

generated), this induced type checking algorithm is decidable, sound, and complete with respect to

the typing rules defined in Sec. 5.

Theorem 6.1 (Decidability). The type checking algorithm terminates in finite time for every
input, assuming a finitely generated session coalgebra.

Proof. The input of the algorithm is a finite context Γ and a process, a finite expression, 𝑃 . Just

like a proof of well-formedness is a tree of typing rules, an execution of the algorithm produces a

tree of algorithmic rules. For any non-Unpack node in the tree, the rule removes some element

from the process(es) to be recursively type checked. The process of any such node is thus strictly

larger than the concatenation of all its children’s’ processes. Because a process is a finite expression,

one can only remove finitely many elements; hence, there can only be finitely many of these

non-Unpack nodes in the tree.

For example, T-Par checks a process 𝑃 | 𝑄 . Its children check 𝑃 and𝑄 , and 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃) +𝑙𝑒𝑛𝑔𝑡ℎ(𝑄)
< 𝑙𝑒𝑛𝑔𝑡ℎ(𝑃 | 𝑄), in terms of their string concatenation.

A-Unpack does not change the process, but it does change the type of a variable. Because we

assumed finitely generated coalgebra, each un state can either be unpacked into a non-un state, or

forms a finite cycle of purely un states. In the former case, the algorithm proceeds with one of the

other, non-A-Unpack, rules. In the latter case we know the channel in question does not allow any

interactions. Because the algorithm only tries to unpack types of variables which the process in

question interacts with, detecting such a cycle immediately allows the algorithm to reject. There

are finitely many variables in a context, finitely many non-Unpack nodes in the tree and finitely

many Unpack nodes per regular node. Thus, there are finitely many nodes in total.

All of the non-recursive premises are decidable (see Theorem 4.16). As such, a finite tree corre-

sponds to an execution that finishes in finite time. □

Having defined algorithmic typechecking, we can go back to the process syntax that we used to

define our typing rules (Fig. 10) by erasing type annotations in input and restriction operators. Let

𝑒𝑟𝑎𝑠𝑒 (·) denote a function on processes defined as

𝑒𝑟𝑎𝑠𝑒 ((𝜈𝑥𝑦 : 𝑇 ).𝑄) = (𝜈𝑥𝑦).𝑒𝑟𝑎𝑠𝑒 (𝑄)
𝑒𝑟𝑎𝑠𝑒 (𝑥 (𝑦 : 𝑇 ).𝑄) = 𝑥 (𝑦).𝑒𝑟𝑎𝑠𝑒 (𝑄)

and as an homomorphism on the remaining process constructs. We have:

Theorem 6.2 (Correctness). Γ1 ⊢ 𝑃 iff there is an annotated process 𝑃 ′ with 𝑃 = 𝑒𝑟𝑎𝑠𝑒 (𝑃 ′),
Γ1 ⊢ 𝑃 ′

; Γ2 and un(Γ2).

The rest of this section is dedicated to proving this theorem. Correctness is generally broken

down in two parts: soundness and completeness. An algorithm is sound if every accepted program is

valid (the right-to-left implication) and it is complete if every valid program—annotated with the

correct types—is accepted (left-to-right). We start by formalising the algorithm output. Let L(Γ)
and U(Γ) denote the linear and unrestricted parts, respectively, of any context Γ. That is,

L(Γ) = {(𝑥 : 𝑇 ) ∈ Γ | lin(𝑇 )}
U(Γ) = {(𝑥 : 𝑇 ) ∈ Γ | un(𝑇 )}

Lemma 6.3 (Algorithmic monotonicity). If Γ1 ⊢ 𝑃 ; Γ2, then
(1) Γ2 ⊆ Γ1, and
(2) U(Γ2) = U(Γ1)
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Proof. The proof is an induction on the structure of the execution tree. We elaborate on A-

Unpack. Suppose Δ1, 𝑥 : 𝑇 ⊢ 𝑃 ; (Δ2 ÷ 𝑥), 𝑥 : 𝑇 , for some unrestricted 𝑇 . We start from the premise

of the rule

Δ1, 𝑥 : 𝛿 (𝑇 ) (∗) ⊢ 𝑃 ; Δ2

By induction,

Δ2 ⊆ Δ1, 𝑥 : 𝛿 (𝑇 ) (∗)
U(Δ2) = U(Δ1, 𝑥 : 𝛿 (𝑇 ) (∗))

Neither of these relations is invalidated by removing 𝑥 from both contexts.

Δ2 ÷ 𝑥 ⊆ Δ1

U(Δ2 ÷ 𝑥) = U(Δ1)
Nor by adding the same 𝑥 : 𝑇 pair to both sides.

(Δ2 ÷ 𝑥), 𝑥 : 𝑇 ⊆ Δ1, 𝑥 : 𝑇

U((Δ2 ÷ 𝑥), 𝑥 : 𝑇 ) = U(Δ1, 𝑥 : 𝑇 )
□

In our proof of soundness, we need algorithmic linear strengthening. In A-Par the entire context

is passed along to the first process, but the typing rules require a strict split of linear variables.

Linear variables that are still present in the output (thus, not referenced in the process) are safe to

remove from the input context.

Lemma 6.4 (Algorithmic linear strengthening). If lin(𝑇 ) and Γ1, 𝑥 : 𝑇 ⊢ 𝑃 ; Γ2, 𝑥 : 𝑇 can be
shown by tree of height 𝑛, then Γ1 ⊢ 𝑃 ; Γ2 can also be shown by a tree of height 𝑛.

Proof. The proof requires an inductive analysis on the structure of the execution tree. Let us

detail two cases, the rest are done in a similar fashion.

When the root of the execution tree is A-Par, suppose that

Δ1, 𝑥 : 𝑇 ⊢ 𝑃 | 𝑄 ; Δ3, 𝑥 : 𝑇

Then, by premise of the rule

Δ1, 𝑥 : 𝑇 ⊢ 𝑃 ; Δ2, 𝑥 : 𝑇 and Δ2, 𝑥 : 𝑇 ⊢ 𝑄 ; Δ3, 𝑥 : 𝑇

Note that monotonicity and 𝑥 : 𝑇 in the output context imply that 𝑥 : 𝑇 is an element of the input

and intermediate contexts as well. Since these are the direct subtrees of the root, they are of height

𝑛 − 1.

We can use induction on both to get Δ1 ⊢ 𝑃 ; Δ2 and Δ2 ⊢ 𝑄 ; Δ3, with trees of height 𝑛 − 1, so

we can construct a tree of height 𝑛 with A-Par at the root, and Δ1 ⊢ 𝑃 | 𝑄 ; Δ3 as conclusion.

When the root is A-In, suppose

Γ1, 𝑥 : 𝑇, 𝑧 : 𝑉 ⊢ 𝑧 (𝑦 : 𝑈 ).𝑃 ; Γ2, 𝑥 : 𝑇

The premise of the rule tells us, for the continuation type 𝑉∗ = 𝛿 (𝑉 ) (∗)
Γ1, 𝑥 : 𝑇,𝑦 : 𝑈 , 𝑧 : 𝑉∗ ⊢ 𝑃 ; Γ3, 𝑥 : 𝑇

Again, this is a direct subtree, so it is of height 𝑛 − 1. The inductive hypothesis lets us remove 𝑥

from both sides, while preserving the height.

Γ1, 𝑦 : 𝑈 , 𝑧 : 𝑉∗ ⊢ 𝑃 ; Γ3
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The rule specifies that Γ2, 𝑥 : 𝑇 = (Γ3, 𝑥 : 𝑇 ) ÷{𝑧,𝑦}, for some Γ3. The variable 𝑥 is preserved through

the difference, so it must be distinct from 𝑧 and 𝑦.

(Γ3, 𝑥 : 𝑇 ) ÷ {𝑧,𝑦} = (Γ3 ÷ {𝑧,𝑦}), 𝑥 : 𝑇

Hence, Γ3 ÷ {𝑧,𝑦} = Γ2; the desired result follows from an application of A-In, resulting in a tree of

height 𝑛.

Γ1, 𝑧 : 𝑉 ⊢ 𝑧 (𝑦 : 𝑈 ).𝑃 ; Γ2

□

Finally, we can prove soundness.

Theorem 6.5. Γ1 ⊢ 𝑃 ; Γ2 and un(Γ2) implies Γ1 ⊢ 𝑒𝑟𝑎𝑠𝑒 (𝑃).

Proof. By induction on the height of inference trees, using a case analysis on the last rule used.

Cases other than A-Par are straightforward; let us illustrate the procedure with A-Branch. Let

𝑐 (𝑇 ) = (&, 𝐿1, 𝑓 ) and suppose that

Γ1, 𝑥 : 𝑇 ⊢ 𝑥 ▷ {𝑙 : 𝑃𝑙 }𝑙∈𝐿2 ; Γ2
The premise says that Γ1, 𝑥 : 𝑓 (𝑙) ⊢ 𝑃𝑙 ; Γ2 for every 𝑙 ∈ 𝐿1. By induction, Γ1, 𝑥 : 𝛿 (𝑇 ) (𝑙) ⊢ 𝑒𝑟𝑎𝑠𝑒 (𝑃𝑙 )
for the same 𝑙 ∈ 𝐿1. The result is directly implied by T-Branch.

Let us elaborate on A-Par. Suppose that Γ1 ⊢ 𝑃 | 𝑄 ; Γ3. We know that both processes are

accepted, as Γ1 ⊢ 𝑃 ; Γ2 and Γ2 ⊢ 𝑄 ; Γ3. Obviously, any type in L(Γ2) is linear, so we can strengthen

the first premise: Γ1 − L(Γ2) ⊢ 𝑃 ; Γ2 − L(Γ2). The output is trivially unrestricted (all linear types

were removed), so we can apply the inductive hypothesis to 𝑃 . Similarly, Γ3 is unrestricted by

assumption, so we can apply the inductive hypothesis to 𝑄 as well.

Γ1 − L(Γ2) ⊢ 𝑒𝑟𝑎𝑠𝑒 (𝑃)
Γ2 ⊢ 𝑒𝑟𝑎𝑠𝑒 (𝑄)

Monotonicity tells us that Γ1 = (Γ1 − L(Γ2)) ◦ Γ2 is in the context split relation. We can conclude

Γ1 ⊢ 𝑒𝑟𝑎𝑠𝑒 (𝑃 | 𝑄) □

Just like we can strengthen a context by removing variables, we can weaken it by adding variables.

The linearity of these additions does not matter.

Lemma 6.6 (Algorithmic Weakening). If Γ1 ⊢ 𝑃 ; Γ2, then Γ1, 𝑥 : 𝑇 ⊢ 𝑃 ; Γ2, 𝑥 : 𝑇 for any pair
𝑥 : 𝑇 where 𝑥 ∉ 𝑑𝑜𝑚(Γ) and 𝑥 does not occur bound in 𝑃 .

Proof. A fairly simple inductive analysis. We detail a single case.

Suppose that Γ1 ⊢ 𝑃 | 𝑄 ; Γ3. We can apply induction to both premises, yielding Γ1, 𝑥 : 𝑇 ⊢ 𝑃 ;

Γ2, 𝑥 : 𝑇 and Γ2, 𝑥 : 𝑇 ⊢ 𝑃 ; Γ3, 𝑥 : 𝑇 . Therefore, Γ1, 𝑥 : 𝑇 ⊢ 𝑃 | 𝑄 ; Γ3, 𝑥 : 𝑇 . □

Theorem 6.7 (Algorithmic Completeness). If Γ1 ⊢ 𝑃 , then there exists a 𝑃 ′ with 𝑒𝑟𝑎𝑠𝑒 (𝑃 ′) = 𝑃 ,
Γ1 ⊢ 𝑃 ; Γ2 and Γ2 unrestricted.

Proof. An inductive analysis on the height of the tree of typing rules. We detail two inductive

cases.

Suppose the root of the tree is [T-Rep], then the process being checked must be !𝑃 . That is, Γ1 ⊢ !𝑃 .
By the inductive hypothesis, there is some 𝑃 ′

such that Γ1 ⊢ 𝑃 ′
; Γ2 and 𝑃 = 𝑒𝑟𝑎𝑠𝑒 (𝑃 ′). Context Γ1 is

unrestricted, by premise of the typing rule, and Γ2 is a subset containing at least all unrestricted
variables. Hence, the two must be equal, implying Γ1 ⊢!𝑃 ′

; Γ2 with unrestricted Γ2.
Suppose the root is scope restriction, i.e., Γ1 ⊢ (𝜈𝑥𝑦)𝑄 . By that rule, there exists some types𝑇 and

𝑈 such that Γ1, 𝑥 : 𝑇,𝑦 : 𝑈 ⊢ 𝑄 and𝑇⊥𝑈 . Since duality is unique up to bisimulation (Prop. 4.10), and
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the duality function yields dual states, we have that 𝑇 ∼ 𝑈 . We use that we can freely substitute

bisimilar types (Corollary 5.6) to conclude Γ1, 𝑥 : 𝑇,𝑦 : 𝑇 ⊢ 𝑄 . Furthermore, this substitution is

height-preserving, so we can apply the inductive hypothesis and get some annotated process 𝑄 ′

such that 𝑄 = 𝑒𝑟𝑎𝑠𝑒 (𝑄 ′) and Γ1, 𝑥 : 𝑇,𝑦 : 𝑇 ⊢ Γ2, where Γ2 is unrestricted. In particular, then

the types of 𝑥 and 𝑦, if present in Γ2, must be unrestricted, so Γ3 = Γ2 ÷ {𝑥,𝑦} is a well-defined,
unrestricted context. Continuing, 𝑄 = 𝑒𝑟𝑎𝑠𝑒 (𝑄 ′) implies that (𝜈𝑥𝑦)𝑄 = 𝑒𝑟𝑎𝑠𝑒 ((𝜈𝑥𝑦 : 𝑇 )𝑄 ′), so
A-Res is applicable, yielding the desired result: Γ1 ⊢ (𝜈𝑥𝑦 : 𝑇 )𝑄 ′

; Γ3. □

Correctness, Theorem 6.2, follows directly from soundness and completeness.

7 CONTEXT-FREE SESSION TYPES
Besides the session types we have considered so far, there is also a strictly more powerful system

called context-free session types [58]. There is a strong resemblance between regular languages and

the session types as we have seen them. Indeed, context-free session types expand the discipline to

be more like context-free languages.

At the basis lies the sequencing operator ‘;’. A session type 𝑇 ;𝑈 will first execute 𝑇 , and once

that is finished, execute𝑈 . Combined with recursion, this allows for interesting interactions that

we could not describe before.

Example 7.1. Suppose our protocol dictates that we send some number of integers, and then

read exactly as many Boolean values. Notice that this behaviour is not expressible in the session

types we have discussed, but we can define a session coalgebra for it. That session coalgebra will,

however, not be finitely generated (Def. 4.14).

𝑇 = 𝜇𝑋 . ⊕
{
next : !int ; 𝑋 ; ?bool ; end

quit : end

The grammar for these context-free session types is very similar to before (i.e., as defined in

Fig. 6); we remove the continuations from in- and output, and replace it with the sequencing

operator between session types.

𝑞 ::= lin | un
𝑝 ::= ?𝑇 | !𝑇 | &{ℓ𝑖 : 𝑆𝑖 }𝑖∈𝐼 | ⊕{ℓ𝑖 : 𝑆𝑖 }𝑖∈𝐼
𝑆 ::= end | 𝑞 𝑝 | 𝑋 ∈ Var | 𝜇𝑋 .𝑆 | 𝑆 ; 𝑆

𝑇 ::= 𝑆 | 𝑑 ∈ 𝐷

Fig. 20. Context-free session types over sets of basic data types 𝐷 and of variables Var

We let CFType be the set of all 𝑇 in the grammar of Fig. 20 which are closed and contractive,

where contractive means that any type variable 𝑋 must occur in or after a pretype 𝑝 . For instance,

the type 𝜇𝑋 . ?int ; 𝑋 is contractive, while 𝜇𝑋 . 𝑋 ; 𝑋 is not.

7.1 Session Coalgebras with Stacks
In principle, it is possible to equip the set of context-free session types with a session coalgebra

structure by using a stack of active states. The issue with this is, however, that the coalgebra is not

finitely generated any longer because the stacks may grow indefinitely and thus a state may reach

infinitely many other states. This is the same issue why one has to consider push-down automata

to recognise context-free language instead of (non-)deterministic finite automata. The goal of this
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section is to devise a notion of session coalgebra with stack, which allows the finitary presentation

of sessions with sequential composition, together with trace semantics and a determinisation

procedure. Trace semantics allows us to understand the behaviour of session coalgebras with stack,

while the determinisation procedure allows us to turn them back into session coalgebras, albeit not

finitely generated ones.

We first introduce session coalgebras with stacks. The idea is that any state can push states on a

stack, which keeps track of the states that will be visited after the current execution has terminated

in an end- or bsc-state.

Definition 7.2 (Stack Session Coalgebras). Let 𝐴 be the set of labels as in Def. 3.2 and define the

𝐴-indexed family 𝐶 , which differs from 𝐵 only for communication labels, by

𝐶𝑎 =

{
{d}, 𝑎 = (com, 𝑝)
𝐵𝑎, otherwise

.

We define the functor 𝐺 : Set → Set on objects by

𝐺 (𝑋 ) =
(∐
𝑎∈𝐴

𝑋𝐶𝑎

)
× 𝑋 ∗

and 𝐺 (𝑓 ) (𝑎, 𝛽,𝑢) = (𝑎, 𝑓 ◦ 𝛽, 𝑓 ∗ (𝑢))

where (−)∗ is the list functor. A coalgebra (𝑋, 𝑐) for the functor𝐺 is called a stack session coalgebra.

Note that 𝐺 is isomorphic to the polynomial functor given by 𝑋 ↦→ ∐
(𝑎,𝑛) ∈𝐴×N𝑋

𝐶𝑎+𝑁𝑛
, where

𝑁𝑛 = {1, . . . , 𝑛}. This makes 𝐺 again a very well-behaved functor, which we will use later on. For

instance, we can easily define bisimilarity for a session coalgebra 𝑐 : 𝑋 → 𝐺 (𝑋 ) as the greatest
fixpoint of the map 𝑐∗ ◦ 𝑔∼ for a relation lifting 𝑔∼ that is defined analogous to 𝑓∼ from Def. 4.2.

Stack session coalgebras should, intuitively, be an extension of session coalgebras with the

possibility of composing executions. This intuition is confirmed by the following lemma.

Lemma 7.3. There is a natural transformation 𝜌 : 𝐹 → 𝐺 defined by

𝜌𝑋 (com, 𝑝, 𝛽) = (com, 𝑝,d ↦→ 𝛽 (d), [𝛽 (∗)])
𝜌𝑋 (𝑎, 𝛽) = (𝑎, 𝛽, 𝜀) , 𝑎 ∉ {com} × 𝑃

where [−] denotes the singleton list and 𝜀 the empty list. This natural transformation induces a functor
CoAlg(𝐹 ) → CoAlg(𝐺) between the categories of session coalgebras without and with stack.

Proof. We only need to check naturality of 𝜌 , the existence of the induced functor is standard.

Let 𝑓 : 𝑋 → 𝑌 be a map. We need to prove that 𝜌𝑌 ◦ 𝐹 𝑓 = 𝐺𝑓 ◦ 𝜌𝑋 , where we write 𝐹 𝑓 instead of

𝐹 (𝑓 ) for the application of 𝐹 to 𝑓 . This shorter notation will be used only in proofs in this section.

For 𝑝 ∈ 𝑃 and 𝛽 : {∗,d} → 𝑋 , we have

(𝜌𝑌 ◦ 𝐹 𝑓 ) (com, 𝑝, 𝛽) = 𝜌𝑌 (com, 𝑝, 𝑓 ◦ 𝛽)
= (com, 𝑝,d ↦→ (𝑓 ◦ 𝛽) (d), [(𝑓 ◦ 𝛽) (∗)])
= (com, 𝑝, 𝑓 ◦ (d ↦→ 𝛽 (d)), 𝑓 ∗ [𝛽 (∗)])
= (𝐺𝑓 ) (com, 𝑝,d ↦→ 𝛽 (d), [𝛽 (∗)])
= (𝐺𝑓 ◦ 𝜌𝑌 ) (com, 𝑝, 𝛽) .

Similarly, we also have for all other (𝑎, 𝛽) that
(𝜌𝑌 ◦ 𝐹 𝑓 ) (𝑎, 𝛽) = (𝑎, 𝑓 ◦ 𝛽, 𝜀) = (𝑎, 𝑓 ◦ 𝛽, 𝑓 ∗ (𝜀)) = (𝐺𝑓 ◦ 𝜌𝑋 ) (𝑎, 𝛽)

and thus 𝜌 is a natural transformation. □
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The natural transformation from Lemma 7.3 shows that the continuation transitions originating

from communication states are equivalent to sequentially composing a simple data transmission

with the continuation state. This interpretation allows us to extend the graphical representation of

session coalgebras to stack session coalgebras.

𝑇
⊕

𝑞1
!

𝑞6
end

𝑞2
?

𝑞3
end

𝑞4
int

𝑞5
bool

next

quit

1

2 1

Fig. 21. A stack-based session coalgebra

Example 7.4. Let us return to the type of Example 7.1, but now as a stack session coalgebra. We

present the coalgebra graphically in Fig. 21, where numbers on transitions indicate where the state

will be in the list of states that is pushed on the stack. Formally, the stack session coalgebra induced

by Fig. 21 is given as follows. We put 𝑋 = {𝑇 } ∪ {𝑞𝑘 | 1 ≤ 𝑘 ≤ 6} and then define 𝑐 : 𝑋 → 𝐺 (𝑋 ):

𝑐 (𝑇 ) = (⊕, 𝛽0, 𝜀) with 𝛽0 (next) = 𝑞1 and 𝛽0 (quit) = 𝑞6

𝑐 (𝑞1) = (!, 𝛽1, [𝑇, 𝑞2]) with 𝛽1 (d) = 𝑞4

𝑐 (𝑞2) = (?, 𝛽2, [𝑞3]) with 𝛽2 (d) = 𝑞5

𝑐 (𝑞3) = (end, 𝑓∅, 𝜀)
𝑐 (𝑞4) = (bsc, int, 𝑓∅, 𝜀)
𝑐 (𝑞5) = (bsc, bool, 𝑓∅, 𝜀)
𝑐 (𝑞6) = (end, 𝑓∅, 𝜀)

More generally, we can see the set of (closed and contractive) context free session types as a

stack session coalgebra.

Lemma 7.5. There is a stack session coalgebra 𝑐CFType : CFType → 𝐺 (CFType).

Proof. We define first a map 𝑜 from pretypes to 𝐺 (CFType) as follows.

𝑜 (?𝑇 ) = (com, in,d ↦→ 𝑇, 𝜀) 𝑜 (!𝑇 ) = (com, out,d ↦→ 𝑇, 𝜀)
𝑜 (&{ℓ𝑖 : 𝑆𝑖 }𝑖∈𝐼 ) = (branch, in, ℓ𝑖 ↦→ 𝑆𝑖 , 𝜀) 𝑜 (⊕{ℓ𝑖 : 𝑆𝑖 }𝑖∈𝐼 ) = (branch, out, ℓ𝑖 ↦→ 𝑆𝑖 , 𝜀)

Using this map, can define 𝑐CFType recursively:

𝑐CFType (𝑑) = (bsc, 𝑑, 𝑓∅, 𝜀)
𝑐CFType (end) = (end, 𝑓∅, 𝜀)
𝑐CFType (lin 𝑝) = 𝑜 (𝑝)
𝑐CFType (un 𝑝) = (un, ∗ ↦→ lin 𝑝, 𝜀)

𝑐CFType (𝑆1 ; 𝑆2) = (𝑎, 𝑓 ,𝑢 : 𝑆2), where 𝑐CFType (𝑆1) = (𝑎, 𝑓 ,𝑢)
𝑐CFType (𝜇𝑋 . 𝑆) = 𝑐CFType (unfold (𝜇𝑋 . 𝑆))

This recursion terminates because all types in CFType are closed and contractive. □
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The reader may have noticed that we chose to allow a stack session coalgebra to push an arbitrary,

but finite, number of states on the stack. This is not strictly necessary, as it could be simulated by

repeated pushing. However, it is more convenient to allow an arbitrary increase of the stack. For

instance, in the definition of 𝑐CFType above, we turned the sequential composition into adding an

element to the end of the list of types that we push on the stack. If we were to restrict this, we would

have to find the left-most type in a sequence of sequential compositions, use this type for the output,

and then push the sequential composition of the remaining types on the stack. For instance, instead

of 𝑐CFType ((end ; 𝑇 ) ; 𝑆) = (end, [𝑇, 𝑆]), we would have 𝑐CFType ((end ; 𝑇 ) ; 𝑆) = (end, [𝑇 ; 𝑆]).
This would be an inconvenient and rather odd definition.

7.2 Trace Semantics of Stack Session Coalgebras
Example 7.4 gave an intuitive description of the behaviour of the stack session coalgebra in Fig. 21.

As 𝐺 is a polynomial functor, there is a final stack session coalgebra [1, 62]. However, this final

coalgebra will just consist of coinductively defined trees with potentially infinite depth that are

labelled in 𝐴 and where the branching at nodes is given by the family 𝐶 and lists [60]. Such trees

correspond to unravelling stack session coalgebras, but these trees carry no information about

the order of execution. Instead, we need to enforce the sequential execution in the semantics of

stack session coalgebras, which essentially corresponds to visiting the unravelled tree depth-first

from left to right. This can be achieved by either altering the functor to a monad that enforces the

stack behaviour [26] or by considering traces in stack session coalgebras. We will opt for the latter

approach because it is more elementary and it demonstrates how functors can be used to formalise

semantics, called functorial semantics. Traces can then be used to verify the execution order that a

type system based on stack session coalgebras has to enforce.

Trace semantics are well-studied for various kinds of transition systems. We will follow here the

approach taken in coalgebraic modal logic [36, 37], although there is some discrepancy that we are

unable to resolve for the time being. This will be discussed towards the end.

To use coalgebraic modal logic, let us recall the contravariant powerset functor 2
−
: Setop → Set.

This functor maps a set 𝑋 to the set of maps into the two element set 2, or in other words, 2
𝑋

is the set of predicates on 𝑋 . The action of this functor on maps is given by 2
𝑓 (𝑝) = 𝑝 ◦ 𝑓 . Note

that for 𝑓 : 𝑋 → 𝑌 , we have 2𝑓 : 2𝑌 → 2
𝑋
, which makes this functor contravariant. An important

property of the contravariant powerset functor is that it forms a contravariant adjunction with

itself, meaning that the set of maps 𝑋 → 2
𝑌
is isomorphic to the set of maps 𝑌 → 2

𝑋
. This can be

recognised as the transposition of maps.

The variant of coalgebraic modal logic, which we will use here, starts with the following diagram.

In this diagram, we use arrows with a tail to indicate contravariant functors. The (covariant) functor

𝐿 will determine the formulas of a testing logic.

Set Set

𝐺

2
−

2
−

𝐿

The idea behind this diagram is that the left-hand side determines the coalgebraic behaviour of
(stack session) coalgebras, while the right-hand side determines the logical behaviour. These two
sides of the diagram are intimately related through the contravariant adjunction. We use this picture

to provide trace semantics for stack session coalgebras [37].
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Definition 7.6. Let 𝑇 be the set of trace labels given by

𝑇 =
©­«

∐
𝑎∈𝐴\{end}∪{bsc}×𝐷

𝐶𝑎
ª®¬ + {end} + 𝐷

and for 1 = {∗} we define the logic functor 𝐿 : Set → Set by

𝐿(𝑋 ) = 𝑇 × 𝑋 + 1 and 𝐿(𝑓 ) = id𝑇 × 𝑓 + id1 .

Note that 𝑇 is defined as the coproduct of all 𝐶𝑎 with the exception of 𝐶end and 𝐶bsc. The reason

for this is that the latter two sets are empty but we want to retain the labels in the traces, even

though they states labelled with end or bsc are terminal. Also, we use the coproduct here, instead

of set union, to guarantee that we obtain a disjoint union. Our goal is to use lists over 𝑇 as traces

for stack session coalgebras. For this we will make use of the fact that 𝐿 has the set 𝑇 ∗
of lists over

𝑇 as initial algebra. The following theorem shows that we can compute traces that are compatible

with bisimilarity.

Theorem 7.7. There is a contravariant functor Γ : CoAlg(𝐺) → Alg(𝐿) from the category of stack
session coalgebras to the category of 𝐿-algebras that makes the following diagram commute, where
2
Id×Id∗ (𝑋 ) = 2

𝑋×𝑋 ∗
is the functor mapping a set 𝑋 to predicates over 𝑋 ×𝑋 ∗ and the downward arrows

are the forgetful functors. This makes Γ a so-called lifting of 2Id×Id
∗
.

CoAlg(𝐺) Alg(𝐿)

Set Set

Γ

2
Id×Id∗

Proof. We first define Γ on a coalgebra 𝑐 : 𝑋 → 𝐺𝑋 :

Γ(𝑐) : 𝐿
(
2
𝑋×𝑋 ∗ ) → 2

𝑋×𝑋 ∗

Γ(𝑐) (∗)(𝑥,𝑢) = 1

Γ(𝑐) (end, 𝑃) (𝑥,𝑢) =
{
𝑃 (𝑥 ′, 𝑢′), 𝑐 (𝑥) = (end, 𝑓∅, 𝑣) and 𝑣 + 𝑢 = 𝑥 ′ : 𝑢′

0, otherwise

Γ(𝑐) (𝑑, 𝑃) (𝑥,𝑢) =
{
𝑃 (𝑥 ′, 𝑢′), 𝑐 (𝑥) = (bsc, 𝑑, 𝑓∅, 𝑣) and 𝑣 + 𝑢 = 𝑥 ′ : 𝑢′

0, otherwise

Γ(𝑐) (𝑎, 𝑏, 𝑃) (𝑥,𝑢) =
{
𝑃 (𝛽 (𝑏)), 𝑣 + 𝑢), 𝑐 (𝑥) = (𝑎, 𝛽, 𝑣)
𝑏0, otherwise

and for another coalgebra 𝑐′ : 𝑌 → 𝐺𝑌 and a homomorphism ℎ : 𝑐 → 𝑐′, we define

Γ(ℎ) : 2𝑌×𝑌 ∗ → 2
𝑋×𝑋 ∗

Γ(ℎ) = 2
ℎ×ℎ∗

.

Clearly, Γ(id) = id and Γ(ℎ◦ℎ′) = Γ(ℎ′)◦𝐺 (ℎ). Also the diagram clearly commutes by the definition

of Γ.
Note that the case, in which dom(𝛽) = ∅ means that 𝑎 is either end or (bsc, 𝑑) for some basic

type 𝑑 . In either case, a state is taken from the top of the stack.
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Thus, it remains to prove that Γ(ℎ) is an algebra homomorphism, which means we have to prove

that the following diagram commutes.

𝐿
(
2
𝑌×𝑌 ∗ )

𝐿
(
2
𝑋×𝑋 ∗ )

2
𝑌×𝑌 ∗

2
𝑋×𝑋 ∗

Γ (𝑐′ )

𝐿 (Γ (ℎ) )

Γ (𝑐 )

Γ (ℎ)

We will prove this by going through the three cases in the definition of Γ(𝑐′). The first case is
the application to ∗ ∈ 1, where we use that 𝐿(Γℎ) (∗) = ∗:

(Γℎ ◦ Γ𝑐′) (∗)(𝑥,𝑢) = (Γ𝑐′) (∗)(ℎ(𝑥), ℎ∗ (𝑢)) = 1 = (Γ𝑐) (∗)(𝑥,𝑢) = (Γ𝑐 ◦ 𝐿(Γℎ)) (∗)(𝑥,𝑢)

The second case is the application to end and 𝑃 : 𝑌 × 𝑌 ∗ → 2:

(Γ𝑐 ◦ 𝐿(Γℎ)) (end, 𝑃) (𝑥,𝑢) = (Γ𝑐) (end, 𝑃 ◦ (ℎ × ℎ∗)) (𝑥,𝑢)

=

{
(𝑃 ◦ (ℎ × ℎ∗)) (𝑥 ′, 𝑢′), 𝑐 (𝑥) = (end, 𝛽, 𝑣) and 𝑣 + 𝑢 = 𝑥 ′ : 𝑢′

0, otherwise

=

{
𝑃 (ℎ(𝑥 ′), ℎ∗ (𝑢′)), 𝑐 (𝑥) = (end, 𝛽, 𝑣) and 𝑣 + 𝑢 = 𝑥 ′ : 𝑢′

0, otherwise

=

{
𝑃 (𝑦′,𝑤 ′), 𝑐 (𝑥) = (end, 𝛽, 𝑣) and ℎ∗ (𝑣) + ℎ∗ (𝑢) = 𝑦′ : 𝑤 ′

0, otherwise

using 𝑦′ : 𝑤 ′ = ℎ(𝑥 ′) : ℎ∗ (𝑢′) = ℎ∗ (𝑥 ′ : 𝑢′) and ℎ∗ (𝑣 + 𝑢) = ℎ∗ (𝑣) + ℎ∗ (𝑢)

=


𝑃 (𝑦′,𝑤 ′), 𝐺ℎ(𝑐 (𝑥)) = (end, ℎ ◦ 𝛽, ℎ∗ (𝑣))

and ℎ∗ (𝑣) + ℎ∗ (𝑢) = 𝑦′ : 𝑤 ′

0, otherwise

=

{
𝑃 (𝑦′,𝑤 ′), 𝑐′ (ℎ(𝑥)) = (end, 𝛾,𝑤) and𝑤 + ℎ∗ (𝑢) = 𝑦′ : 𝑤 ′

0, otherwise

using 𝐺ℎ(𝑐 (𝑥)) = 𝑐′ (ℎ(𝑥)), 𝛾 = ℎ ◦ 𝛽,𝑤 = ℎ∗ (𝑣)
= (Γ𝑐′) (end, 𝑃) (ℎ(𝑥), ℎ∗ (𝑢))
= (Γℎ ◦ Γ𝑐′) (end, 𝑃) (𝑥,𝑢)

The third case, application to an element in {bsc} × 𝐷 and a predicate 𝑃 follows the same

reasoning.
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The last case is the application to 𝑎 ∈ 𝐴 \ {end}, 𝑏 ∈ 𝐶𝑎 and 𝑃 : 𝑌 × 𝑌 ∗ → 2:

(Γ𝑐 ◦ 𝐿(Γℎ)) (𝑎, 𝑏, 𝑃) (𝑥,𝑢) = (Γ𝑐) (𝑎, 𝑏, 𝑃 ◦ (ℎ × ℎ∗)) (𝑥,𝑢)

=

{
(𝑃 ◦ (ℎ × ℎ∗)) (𝛽 (𝑏)), 𝑣 + 𝑢), 𝑐 (𝑥) = (𝑎, 𝛽, 𝑣)
0, otherwise

=

{
𝑃 (ℎ(𝛽 (𝑏)), ℎ∗ (𝑣 + 𝑢)), 𝑐 (𝑥) = (𝑎, 𝛽, 𝑣)
0, otherwise

=

{
𝑃 (𝛾 (𝑏),𝑤 + ℎ∗ (𝑢)), 𝐺ℎ(𝑐 (𝑥)) = (𝑎,𝛾,𝑤)
0, otherwise

using (𝑎,𝛾,𝑤) = (𝑎, ℎ ◦ 𝛽, ℎ∗ (𝑣))

=

{
𝑃 (𝛾 (𝑏),𝑤 + ℎ∗ (𝑢)), 𝑐′ (ℎ(𝑥)) = (𝑎,𝛾,𝑤)
0, otherwise

= (Γ𝑐′) (𝑎, 𝑏, 𝑃) (ℎ(𝑥), ℎ∗ (𝑢))
= (Γℎ ◦ Γ𝑐′) (𝑎, 𝑏, 𝑃) (𝑥,𝑢)

This shows that Γ𝑐 ◦ 𝐿(Γℎ) = Γℎ ◦ Γ𝑐′ in all three cases and Γ(ℎ) is thus a functor. □

Using Theorem 7.7 and the fact that 𝐿 has the set 𝑇 ∗
of lists over 𝑇 as initial algebra, we obtain

traces of stack session coalgebras.

Corollary 7.8. For every stack session coalgebra 𝑐 : 𝑋 → 𝐺 (𝑋 ) there is a map 𝑐 : 𝑋 → 2
𝑇 ∗

that
assigns to a state the (finite) traces originating from it. Moreover, whenever two states 𝑥 and 𝑦 are
bisimilar in 𝑐 , then 𝑐 (𝑥) = 𝑐 (𝑦).

Proof. Since 𝑇 ∗
is an initial 𝐿-algebra, we obtain from 𝑐 in the diagram below on the left, the

unique algebra homomorphism ℎ by applying Theorem 7.7. We can then transpose ℎ to
ˆℎ on the

right and compose it with the map that sends any 𝑥 ∈ 𝑋 to the pair (𝑥, 𝜀) ∈ 𝑋 × 𝑋 ∗
. This gives use

the map 𝑐 .

𝑋 𝐿(𝑇 ∗) 𝐿
(
2
𝑋×𝑋 ∗ )

𝑋 × 𝑋 ∗
2
𝑇 ∗

𝐺 (𝑋 ) 𝑇 ∗
2
𝑋×𝑋 ∗

𝑋

𝑐

𝐿 (ℎ)

Γ (𝑐 )

ˆℎ

ℎ

⟨id,𝜀 ⟩ 𝑐

Since𝐺 is a polynomial functor, a bisimulation on 𝑐 is given equivalently [54] by a span of coalgebra

homomorphisms in CoAlg(𝐺)

(𝑋, 𝑐) (𝑅, 𝑐𝑅) (𝑋, 𝑐)𝜋1 𝜋2

where 𝑅 ⊆ 𝑋 × 𝑋 is a relation with a coalgebra 𝑐𝑅 : 𝑅 → 𝐺 (𝑅) on it, and 𝜋1 and 𝜋2 are the product

projections. This means that 𝜋1 and 𝜋2 must be coalgebra homomorphism. By Theorem 7.7, we

then obtain algebra homomorphisms in the other direction:(
2
𝑋×𝑋 ∗

, Γ(𝑐)
) (

2
𝑅×𝑅∗

, Γ(𝑐𝑅)
) (

2
𝑋×𝑋 ∗

, Γ(𝑐)
)Γ (𝜋1 ) Γ (𝜋2 )
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As Γ(𝜋1) and Γ(𝜋2) are algebra homomorphisms, the following diagram commutes for 𝑘 = 1, 2.

𝐿(𝑇 ∗) 𝐿
(
2
𝑋×𝑋 ∗ )

𝐿
(
2
𝑅×𝑅∗ )

𝑇 ∗
2
𝑋×𝑋 ∗

2
𝑅×𝑅∗

𝐿 (ℎ)

Γ (𝑐 )

𝐿 (Γ (𝜋𝑘 ) )

Γ (𝑐𝑅 )

ℎ Γ (𝜋𝑘 )

Since 𝑇 ∗
is an initial algebra, we obtain Γ(𝜋1) ◦ ℎ = Γ(𝜋2) ◦ ℎ. We can use this to obtain trace

equivalence for bisimilar states: Let 𝑥,𝑦 ∈ 𝑋 be bisimilar, then there is a relation 𝑅 that gives rise to

a span of coalgebras as above. Applying the equality we just obtained, we then have for all𝑤 ∈ 𝑇 ∗

that

𝑐 (𝑥) (𝑤) = ˆℎ(𝑥, 𝜀) (𝑤)
= ℎ(𝑤) (𝑥, 𝜀)
= (Γ(𝜋1) ◦ ℎ) (𝑤) ((𝑥,𝑦), 𝜀)
= (Γ(𝜋2) ◦ ℎ) (𝑤) ((𝑥,𝑦), 𝜀)
= 𝑐 (𝑦) (𝑤) .

Since this holds for all𝑤 , we have 𝑐 (𝑥) = 𝑐 (𝑦), as desired. □

Let us try to understand this result a bit better. For any coalgebra 𝑐 : 𝑋 → 𝐺 (𝑋 ), 𝑥 ∈ 𝑋 and

𝑤 ∈ 𝑇 ∗
, we obtain from the proof that

𝑐 (𝑥) (𝑤) = ℎ(𝑤) (𝑥, 𝜀)
and thus for the empty list

𝑐 (𝑥) (𝜀) = ℎ(𝜀) (𝑥, 𝜀) = Γ(𝑐) (∗)(𝑥, 𝜀) = 1 .

This means that the empty list is a trace for any stack session coalgebra. For composed lists, on the

other hand, we have for 𝑎 ≠ end that

𝑐 (𝑥) ((𝑎, 𝑏) : 𝑤) = ℎ((𝑎, 𝑏) : 𝑤) (𝑥,𝑢)
= Γ(𝑐) (𝑎, 𝑏, ℎ(𝑤)) (𝑥,𝑢)
= ℎ(𝑤) (𝛽 (𝑏)), 𝑣 + 𝑢) for 𝑐 (𝑥) = (𝑎, 𝛽, 𝑣)

and similarly for 𝑎 = end. Combining this with the fact that the empty list is always a trace, we

have that any list of labels, which is compatible with the transitions of a stack session coalgebra, is

a (partial) trace.

More concretely, let us compute some traces for the coalgebra given in Example 7.4.

Example 7.9. We shall refer to the stack session coalgebra induced by Fig. 21 as 𝑐 : 𝑋 → 𝐺 (𝑋 )
with 𝑋 = {𝑇 } ∪ {𝑞𝑘 | 1 ≤ 𝑘 ≤ 6}. As any list of labels that is compatible with 𝑐 is a trace, we would

expect that, for instance, [(⊕, next), (!,d), int], is a trace. Indeed, using the above formulas and

𝑐 (𝑇 ) = (⊕, 𝛽1, 𝜀) with 𝛽1 (next) = 𝑞1

𝑐 (𝑞1) = (!, 𝛽2, [𝑇, 𝑞2]) with 𝛽2 (d) = 𝑞4

we have

𝑐 (𝑇 ) [(⊕, next), (!,d), int] = ℎ[(!,d), int] (𝑞1, 𝜀)
= ℎ[int] (𝑞4, [𝑇, 𝑞2])
= ℎ(𝜀) (𝑇, [𝑞2])
= 1 .
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It should be noted that in second to last line we stop computing in state 𝑇 and still have state 𝑞2
remaining on the stack. Using a similar computation, is can be easily verified that the word𝑤 with

𝑤 = (⊕, next) : (!,d) : int : (⊕, quit) : end : (?,d) : bool : end

is a trace of 𝑐 and that the computation ends in state 𝑞6 with an empty stack.

Keeping track of the stack allows us to “determinise” stack session coalgebras into session

coalgebras [37].

Theorem 7.10. There is a determinisation functor 𝐷 that turns stack session coalgebras into session
coalgebra, such that the following diagram commutes where the downward arrows are again the
respective forgetful functors.

CoAlg(𝐺) CoAlg(𝐹 )

Set Set

𝐷

(−)∗

Proof. Towards defining the determinisation functor, we define two natural transformations

𝜆 : 𝐺 → 𝐹 (−∗) and 𝜎 : 𝐹 (−∗) × (−)∗ → 𝐹 (−∗) by putting

𝜆𝑋 : 𝐺𝑋 → 𝐹 (𝑋 ∗)
𝜆𝑋 (com, 𝑝, 𝛽,𝑢) = (com, 𝑝, 𝛽 ′), where 𝛽 ′ (d) = [𝛽 (d)] and 𝛽 ′ (∗) = 𝑢

𝜆𝑋 (𝑎, 𝛽,𝑢) = (𝑎, 𝛽 ′), where 𝛽 ′ (𝑠) = 𝛽 (𝑠) : 𝑢
and

𝜎𝑋 : 𝐹 (𝑋 ∗) × 𝑋 ∗ → 𝐹 (𝑋 ∗)
𝜎𝑋 ((com, 𝑝, 𝛽), 𝑣) = (com, 𝑝, 𝛽 ′), where 𝛽 ′ (d) = 𝛽 (d) and 𝛽 ′ (∗) = 𝛽 (∗) + 𝑣

𝜎𝑋 ((𝑎, 𝛽), 𝑢) = (𝑎, 𝛽 ′), where 𝛽 ′ (𝑠) = 𝛽 (𝑠) + 𝑣

It is straightforward to show that these definitions are natural in 𝑋 . Using the transformations 𝜆

and 𝜎 , the determinisation functor is defined on coalgebras 𝑐 : 𝑋 → 𝐺𝑋 by

𝐷 (𝑐) : 𝑋 ∗ → 𝐹 (𝑋 ∗)
𝐷 (𝑐) (𝜀) = (end, 𝑓∅)
𝐷 (𝑐) (𝑥 : 𝑣) = 𝜎𝑋 (𝜆𝑋 (𝑐 (𝑥)), 𝑣)

and on homomorphisms ℎ : (𝑋, 𝑐) → (𝑌, 𝑐′) by 𝐷 (ℎ) = ℎ∗. A routine calculation shows that 𝐷 (ℎ)
is a homomorphism from 𝐷 (𝑐) to 𝐷 (𝑐′) by using naturality of 𝜆 and 𝜎 . That 𝐷 preserves identities

and composition is immediate by (−)∗ being a functor. □

Both Theorems 7.7 and 7.10 follow the outline provided to construct traces and to determinise

stack session coalgebras by using coalgebraic modal logic, as it can be found in the coalgebra

literature [37]. However, there are some discrepancies that we are unable to resolve:

(1) Theorem 7.7 is typically proven by providing a certain natural transformation. However, it

seems unclear how it could be constructed in our case.

(2) Similarly, Theorem 7.10 arises typically from a natural transformation and is, again, unclear

how it could be given in our case.

These issues may suggest that we either may have to use a different setup, for example by replacing

the category of sets with the category of monoids to deal with lists, or that the framework of

coalgebraic modal logic and trace semantics needs to be extended. We leave this as future work.

Theorems 7.7 and 7.10 provide in any case a clear picture akin to functorial semantics.
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8 CONCLUDING REMARKS
We have developed a new, language-independent foundation for session types by relying on coal-

gebras. We introduced session coalgebras, which elegantly capture all communication structures of

session types, both linear and unrestricted, without committing to a specific syntactic formulation

for processes and types. Session coalgebras allow us to rediscover language-independent coinduc-

tive definitions for duality, subtyping, and type equivalence. A key idea is to assimilate channel

types to the states of a session coalgebra; we demonstrated this insight by deriving a session type

system for the 𝜋-calculus, unlocking decidability results and algorithmic type checking.

Interesting strands for future work include extending our coalgebraic toolbox so as to give

a language-independent justification to other session type systems, such as multiparty session

types [31] or nested session types [14]. Another line concerns extending our coalgebraic view

to include language-dependent issues and properties that require a global analysis on session

behaviours. Salient examples are liveness properties such as (dead)lock-freedom and progress:

advanced type systems [6, 13, 38, 45, 46] typically couple types with advanced mechanisms (such

as priority-based annotations and strict partial orders), which provide a global insight to rule out

the circular dependencies between sessions that are at the heart of stuck processes.

Lastly, the whole area of coalgebra now becomes available to explore session types. One possible

direction is to make use of final coalgebras and modal logic, which would allow us to analyse

the behaviour of session coalgebras. This would be particularly powerful in combination with

composition operations for session coalgebras to break down protocols and type checking. Another

direction is to use session coalgebras to verify other coalgebras that take on the role of the syntactic

𝜋-calculus [18, 44] and thereby allowing also for the exploration of other semantics like manifest

sharing [5, 6] without resorting to a specific syntax.
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