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The goal of this work is the development of a syntax that treats inductive and coinductive
types with term dependencies on a par. We achieve this by extending Hagino’s idea [Hag87] to
dependent types, in that we interpret data types as dialgebras in fibrations. This follows the
ideas we present in the talk “Dependent Inductive and Coinductive Types Through Dialgebras
in Fibrations”. We note that our syntax for inductive types is similar to GADTs [HF11], and
that coinductive types are defined by their destructors like in [APTS13].

The context, types and terms of our calculus are introduced using the following judgements.

• ` ∆ | Γ ctx – The type variable context ∆ and term variable context Γ are well-formed.

• ∆ | Γ ` A : ∗ – The type A is well-formed in the context ∆ | Γ.

• Γ ` t : A – The term t is well-formed and of type A in the context Γ.

• f : Γ1 → Γ2 – The context morphism f is well-formed with type Γ1 → Γ2.

The context judgement is given by the following rules.

` ∅ | ∅ ctx
∅ | Γ ` A : ∗

` ∆ | Γ, x : A ctx

` ∆ | Γ′ ctx ` ∆ | Γ ctx

` ∆, (Γ′ ` X : ∗) | Γ ctx

It is important to note that, whenever a term variable is introduced into a context, its type is
not allowed to use free type variables. This ensures that types are strictly positive.

The notion of substitution, we use, builds on context morphisms that are formed as follows.

` ∆ | Γ ctx

() : Γ→ ∅
f : Γ1 → Γ2 Γ1 ` t : A[f ]

(f, t) : Γ1 → (Γ2, x : A)

Explicitly, if Γ2 = x1 : A1, . . . , xn : An, then a context morphism f : Γ1 → Γ2 is a tuple
f = (f1, . . . , fn) with Γ1 ` fi : Ai[(f1, . . . , fi−1)] for each i = 1, . . . , n.

The judgement for type construction is given, together with the usual contraction, weakening
and exchange rules for type variables, by the following rules.

(TyVar-I)
∆, (Γ′ ` X : ∗) | Γ,Γ′ ` X : Ui

∆ | Γ1 ` A : ∗ g : Γ2 → Γ1
(Subst-Ty)

∆ | Γ2 ` A[g] : ∗

∆, (Γ ` X : ∗) | Γk ` Ak : ∗ fk : Γk → Γ k = 1, . . . , n ρ ∈ {µ, ν}
(FP-Ty)

∆ | Γ ` ρ(X;
#—

f ;
#—

A) : ∗

Note that substitutions with context morphisms are part of the syntax and that type variables
come with a term variable context. These contexts determine the context in which an initial/-
final dialgebra lives. The dialgebras essentially bundle the local context, the domain and the
codomain of their constructors respectively destructors, as we will see.
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This brings us to the rules for term constructions, the last judgement we have to define.
The corresponding rules use substitutions of a type B for a variable X in a type A, denoted
by A{B/X}, which is defined as expected. All rules involving initial or final dialgebras have as
side-condition that the corresponding types are well-formed.

∆ | Γ ` A : ∗
(Proj)

∆ | Γ, x : A ` x : A

∆ | Γ1 ` t : A g : Γ2 → Γ1
(Subst)

∆ | Γ2 ` t[g] : A[g]

(Ind-I)
Γk, x : Ak{µ(X;

#—

f ;
#—

A)/X} ` αk : µ(X;
#—

f ;
#—

A)[fk]

(Coind-E)
Γk, x : ν(X;

#—

f ;
#—

A)[fk] ` ξk : Ak{ν(X;
#—

f ;
#—

A)/X}

Γ ` C : ∗ Γk, y : Ak{C/X} ` gk : C[fk]
(Ind-E)

Γ, z : µ(X;
#—

f ;
#—

A) ` rec #—g : C

Γ ` C : ∗ Γk, y : C[fk] ` gk : Ak{C/X}
(Coind-I)

Γ, z : C ` corec #—g : ν(X;
#—

f ;
#—

A)

We see that the domain of the constructors αk for µ(X;
#—

f ;
#—

A) is determined by Ak and their
codomain by substituting along fk. Dually, the domain of destructors ξk is given by substituting
fk and their codomain by Ak. Note also that the bound variables in (co)recursions are implicit.

This concludes the definition of our proposed calculus. Note that there are no primitive type
constructors for →-, Π- or Σ-types, all of these are, together with the corresponding (weak)
introductions and eliminations, definable in the above calculus. We will see this in the talk.

As basic example, assuming we have already defined the singleton type 1 and binary prod-
ucts, then we can define vectors Γ ` VecA : ∗ in context Γ = n : N by

VecA = µ(X; (f1, f2); (1, A×X[k]))

Γ1 = ∅ Γ2 = k : N
f1 = (0) : Γ1 → Γ (Γ ` X : ∗) | Γ1 ` 1 : ∗
f2 = (k + 1) : Γ2 → Γ (Γ ` X : ∗) | Γ2 ` A×X[k] : ∗

This yields the constructors x : 1 ` α1 : VecA[0] and k : N, x : A×VecA[k] ` α2 : VecA[k+ 1],
which are usually called nil and cons.

In the talk, we show that the above calculus has indeed the structure we are aiming for, in
the sense that types in context give rise to a split fibration, if we employ the expected equations
on substitutions (A[id] = A, xi[f ] = fi, etc.). This allows us to conveniently define actions of
types on terms, and a reduction relation. For now, we have no proof of type preservation etc.
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