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Traditionally, logic programs have been used to describe relations between finite terms, a fact most
prominently reflected in the notion of the least Herbrand model [7, 5]. A typical example is the following
logic program, which generates the natural numbers.

1 : nat(0)←−
2 : nat(s(x))←− nat(x)

(1)

Later [1, 2, 3, 4, 6], also coinductive interpretations of logic programs have been proposed. Under
a coinductive interpretation, the program given in (1) generates an extra element sω . The thus obtained
interpretation of nat corresponds to the completion of the natural numbers with a point at infinity. Another
example, which is non-trivial only under a coinductive interpretation, are streams over natural numbers:

3 : str(cons(x,y))←− nat(x),str(y) (2)

Note, however, that a purely coinductive model also contains elements of the form cons(sω , t) for some
(infinite) stream term t. To rule out such spurious terms we would have to interpret nat inductively and
str coinductively, something that has not been studied so far.

In the following we will augment logic programs with a function par that assigns to each relation
symbol its parity, which can be either µ or ν . The parity expresses whether a relation is supposed to be
interpreted inductively or coinductively. For example, to obtain the intended interpretation of the clauses
in (1) and (2), we would define par(nat) = µ and par(str) = ν .

Another, perhaps more interesting, example is the sub-stream relation sub that relates streams s and
t if all values of s appear in order in t. We can express the sub-stream relation as logic program by using
a helper relation subµ . The relation subµ tries to match the head of s with a value in t. An inductive
interpretation of subµ enforces then that the head of s must be found in t after finitely many steps.

par(sub) = ν par(subµ) = µ

4 : sub(x,y)←− subµ(x,y)

5 : subµ(cons(n,x),cons(n,y))←− nat(n),sub(x,y)

6 : subµ(x,cons(n,y))←− nat(n),subµ(x,y)

(3)

It should be noted that the relation sub is interpreted as the full relation in a purely coinductive model
because in such a model, the search of subµ does not have to terminate.

A first step towards understanding inductive-coinductive logic programs is understanding their de-
notational models. Here it is important that logic programs Φ are given by means of two signatures ΣΦ

and ∆Φ. The signature ΣΦ contains thereby the symbols that are used in the terms, like s and 0 in the
examples above. On the other hand, ∆Φ specifies the relation symbols used in Φ. We will denote the arity
of a symbol f ∈ ΣΦ by ar f and similarly for symbols in ∆Φ. A (term) model M for Φ is then required
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to provide interpretations of the relation symbols in ∆Φ as relations between possibly infinite terms over
ΣΦ. Moreover, for inductive relation symbols their interpretation in M needs to be forward closed under
the clauses of Φ, whereas the interpretation of coinductive relations must be backwards closed.

Let us make this more precise. Suppose we are given signatures Σ and ∆, and a set V of variables. Let
Σ∗(V ) be the set of terms over V , and Σ∞ be the set of possibly infinite ground terms over Σ. A formula
ϕ is given by Q(

#—t ) for some Q ∈ ∆ and a tuple #—t = (t1, . . . , tarQ) of terms in Σ∗(V ). We call a finite set
of formulas a sentence. Finally, a (Horn) clause is a pair of a sentence S and a formula ϕ , denoted by
ϕ ←− S. A logic program Φ consists of signatures Σ, ∆, a map par : ∆→{µ,ν} and a set of clauses.

Using this setup, we now characterise models for logic programs Φ. First, we associate to Φ a map
Φ̂ : ∏Q∈∆ RelarQ(Σ

∞
Φ
)→∏Q∈∆ RelarQ(Σ

∞
Φ
) by

Φ̂(F)(Q) :=
⋃

φ←−S∈Φ

φ =Q(
#—t )

{
#—t [σ ]

∣∣ σ : V → Σ
∞
Φ and ∀P( #—s ) ∈ S. #—s [σ ] ∈ F(P)

}
,

where #—t [σ ] denotes the substitution of σ into all terms in #—t . Moreover, we define components

Φ̂ρ : ∏
Q∈∆

RelarQ(Σ
∞)→ ∏

Q∈∆ρ

RelarQ(Σ
∞)

of Φ̂ by restriction: Φ̂ρ(Q) := Φ̂(Q)|∆ρ
, where ∆ρ := par−1(ρ). A Φ-model M is given by a map

M ∈∏Q∈∆ RelarQ(Σ
∞), such that

Φ̂µ(M )vMµ and Mν v Φ̂ν(M ),

wherev is point-wise inclusion and Mρ is the restriction M |∆ρ
. This encodes precisely the forward and

backwards closure conditions.
This characterisation of models in terms of a monotone operator enables us to construct a fixed point

model for Φ. This in turn gives us a universe of discourse for exploring other semantics and proof
systems for mixed inductive-coinductive logic programs.

In the talk, we will discuss properties of the fixed point model. We will further discuss standard
models, in which the interpretation of inductive relations is restricted. This allows us to prove weak
completeness of the fixed point model with respect to standard models.
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