
Finitely Presentable Higher-Dimensional Automata1

and the Irrationality of Process Replication2

Henning Basold #3

LIACS, Leiden University4

Thomas Baronner #5

Leiden University (student)6

Márton Hablicsek #7

MI, Leiden University8

Abstract9

Higher-dimensional automata (HDA) are a formalism to model the behaviour of concurrent systems.10

They are similar to ordinary automata but allow transitions in higher dimensions, effectively enabling11

multiple actions to happen simultaneously. For ordinary automata, there is a correspondence between12

regular languages and finite automata. However, regular languages are inherently sequential and one13

may ask how such a correspondence carries over to HDA, in which several actions can happen at14

the same time. It has been shown by Fahrenberg et al. that finite HDA correspond with interfaced15

interval pomset languages generated by sequential and parallel composition and non-empty iteration.16

In this paper, we seek to extend the correspondence to process replication, also known as parallel17

Kleene closure. This correspondence cannot be with finite HDA and we instead focus here on locally18

compact and finitely branching HDA. In the course of this, we extend the notion of interval ipomset19

languages to arbitrary HDA, show that the category of HDA is locally finitely presentable with20

compact objects being finite HDA, and we prove language preservation results of colimits. We21

then define parallel composition as a tensor product of HDA and show that the repeated parallel22

composition can be expressed as locally compact and as finitely branching HDA, but also that the23

latter requires infinitely many initial states.24

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation25

→ Automata extensions26

Keywords and phrases higher-dimensional automata, locally finitely presentable category, interval27

posets, colimits, parallel closure, process replication28

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2329

1 Introduction30

Automata theory has as a core goal that problems, like deciding language membership, should31

be solved by finitary means. With this goal in mind, research on automata typically strives for32

a correspondence between certain kinds of finitary automata, languages, syntactic expressions,33

and algebras. The classical example of this correspondence is between finite (non)deterministic34

automata, regular languages, free Kleene algebras (aka. regular expressions), and finite35

syntactic monoids. In the area of concurrency, such correspondences have been sought as36

well [7, 9, 15, 26, 28]. Several automata models have emerged from this as did the notion of37

concurrent Kleene algebras [17, 18], which extend Kleene algebras with parallel computation38

and process replication (also called parallel closure). Concurrent Kleene algebras correspond39

then indeed to several automata models [26, 28].40

Parallel to automata models for concurrent Kleene algebras, several operational models of41

true concurrency have been developed, such as Petri nets and higher-dimensional automata.42

These are models that can faithfully represent parallel computation without having to resort43

to sequentialisation. We will be focusing on higher-dimensional automata (HDA) here44

© Jane Open Access and Joan R. Public;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.basold@liacs.leidenuniv.nl
https://orcid.org/0000-0001-7610-8331
mailto:thomasbaronner@gmail.com
https://orcid.org/0009-0006-7710-3085
mailto:m.hablicsek@math.leidenuniv.nl
https://orcid.org/0000-0001-7549-9713
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Irrationality of Process Replication for HDA

because of their very fruitful links to algebraic topology that promise to help with issues45

in concurrency [12, 13, 14, 21, 22, 32, 33, 34, 36]. Initially, we were hoping to complete the46

project started by Fahrenberg et al. [11, 10] to obtain a correspondence between concurrent47

Kleene algebras and HDAs. In that work, the authors restricted themselves to finite HDA, as48

one may expect for rational languages, and showed that it is not possible to realise process49

replication as finite HDA. We then expected that we could move to the next best thing:50

locally finite HDA. This, however, turns out to be an impossible task and we will demonstrate51

that any HDA is locally finite or, more technically put, that the category of HDA is locally52

finitely presentable (lfp). In principle, being lfp is quite desirable for a category to reduce53

constructions to finite subobjects, something that we will use as well. However, in the case54

of computation machines, one would hope to find that locally finite machines form a class in55

between finite and arbitrary machines [4, 30, 31]. That this is not so tells us that there is56

something to be desired about the definition of HDA.57

But what are HDA in the first place? The idea is that they generalise labelled transition58

systems to allow for n actions to be active simultaneously by modelling transitions as n-cells59

in higher-dimensional cubes. For instance, Figure 1 shows a graphical representation of a60

HDA over an alphabet with actions {a, b, c, d}. The dots indicate 0-cells, in which no action

· · ·

· · ·

· · ·

b

b

c

d

c c

b

a

d

a a

Figure 1 The event a may happen in parallel with b and d (filled squares), while the event c is in
conflict with b and d (empty squares); two parallel executions of a and b, and a and d are indicated
by the dashed homotopic paths; the cells with double arrows are accepting cells

61

is active, solid arrows are 1-cells that are transitions with one active action, and the blue62

shaded areas are 2-cells with two active actions. Starting from the bottom left, first a and b63

may be active in parallel and any execution path through the shaded area is allowed. In the64

square above that, the action c and b have to be executed sequentially because the square is65

not filled. The HDA in Figure 1 accepts a run if one of the 0-cells with a double arrow is66

reached. For instance, the (sequential) path a→ b→ c is accepted. More generally, HDA67

accept pomset languages [11]. In the case of Figure 1, the accepted language is given by the68

following set consisting of ten pomsets.69 {(
a b c

)
,
(

a c b
)
,
(

b a c
)
,70

71 (
a b d c

)
,
(

b a d c
)
,
(

b d a c
)
,72

73  a

c

b

 ,

 a

c

b d

 ,

 a

d c

b

 ,

 a

b c

d


74

The first six are purely sequential runs, while the last four use the concurrent capabilities75

of the HDA to run a, b, c and d in parallel. Pomset languages can be composed with the76

operations of concurrent Kleene algebras, and one may then ask which of these operations77

carry over to HDA and may result in a correspondence between (locally) finite HDA and78

rational pomset languages constructed from these operations.79

H. Basold, T. Baronner, M. Hablicsek 23:3

Outline and Contributions80

We show in Section 3.3 that the category of HDA is a locally finitely presentable (lfp) category81

and that finite HDA are exactly the compact objects. This result allows the reduction of82

arguments to finite HDA. In Section 4.2, we show that languages of coproducts and filtered83

colimits of HDA are given directly by the languages of the HDA in the corresponding diagrams.84

We also give in Section 3.2 a novel characterisation of the tensor product of HDA, and then85

use this and the lfp property to show that the tensor product yields the parallel composition86

of languages. In Section 5 we set out to model process replication using HDA and present87

two possible local finiteness conditions for HDA that are stable under process replication.88

The caveat is that both notions involve some infinite branching and we end with a result that89

shows that it is impossible to realise process replication without infinite branching. Before90

all of this, we begin the paper with a recap of the theory of pomset languages in Section 291

and of HDA in Section 3.1.92

Related Work93

The work of Lodaya and Weil [28] offers another automaton model for concurrency, called94

branching automata, as well as an algebraic perspective. Interestingly, their correspondence95

is restricted to languages of bounded width. Our result in Section 5 could be extended to96

show that finitely branching HDA correspond to languages of bounded width, but we do not97

explore this further, as bounded width languages can be realised without process replication.98

Ésik and Németh [7] prove a correspondence between rational languages of series-parallel99

biposets, which are essentially pomsets, and finite parenthesising automata. Such automata100

have two kinds of states and transition relations that can be thought of as 0- and 1-cells,101

and transitions among them (respectively 1- and 2-cells) and transitions up and down one102

dimension and that are guarded by parentheses. Thus, they make HDA more flexible in that103

they allow dimension change but also restrict the dimensions.104

Jipsen and Moshier [20] reiterate on branching automata [28] but improve them by adding105

a bracketing condition similarly to the parenthesising automata [7].106

Kappé and coauthors [24, 25, 26] have shown that finite well-nested pomset automata107

correspond to concurrent Kleene algebras and, what they call, series-parallel rational expres-108

sions. Pomset automata have two transition functions, one for sequential and one for parallel109

computation. The latter can branch out to finitely many parallel states and synchronise after110

each has completed their work. This allows them to implement process replication because111

the number of parallel processes can grow arbitrarily during execution, while the dimension112

of a cell in a HDA fixes the number of parallel processes. We will discuss this in Section 6.113

Finally, our work builds on the work by Fahrenberg et al. [10]. For the most part, we114

follow [10] in our definitions of HDA and languages, but also deviate in some choices, like115

the definition of the cube category and the tensor product of HDA. We have also followed116

them in giving up on event consistency [11], as the category of HDA would otherwise not be117

cocomplete [3].118

2 Concurrent Words via Ipomsets119

In this section we give a quick recap of the theory of interval ipomsets and their languages120

and the operations of sequential composition, parallel composition and the parallel Kleene121

closure following [8].122

CVIT 2016

23:4 Irrationality of Process Replication for HDA

2.1 Ipomsets123

▶ Definition 1. A labelled iposet P is a tuple (|P |, <P , 99KP , SP , TP , λP) where124

|P | is a finite set,125

<P is a strict partial order on |P | called precedence order,126

99KP is a strict partial order on |P |, called event order, that is linear on <P -antichains,127

λP : |P | → Σ is a labelling map to an alphabet Σ,128

SP ⊆ |P | is a set of <P -minimal elements called the source set, and129

TP ⊆ |P | is a set of <P -maximal elements called the target set.130

Note that the condition that 99KP is linear on <P -antichains implies that 99KP and <P131

together form a total order.132

▶ Definition 2. We say that a labelled iposet P is subsumed by a labelled iposet Q, written133

P ⊑ Q, if there exists a bijection f : |P | → |Q| with f(SP) = SQ, f(TP) = TQ and such that134

for all x, y ∈ |P | we have135

1. f(x) <Q f(y) =⇒ x <P y136

2. x 99KP y, x ̸<P y, y ̸<P x =⇒ f(x) 99KQ f(y)137

3. λP (x) = λQ ◦ f(x)138

The labelled iposets P and Q are isomorphic f is an isomorphism for both orders. An ipomset139

is an isomorphism class of labelled iposets.140

P ⊑ Q intuitively means that P is more ordered by the precedence order < than Q which141

means that P has less "concurrency". Note that isomorphisms between labelled iposets are142

unique and it is thus safe to consider any skeleton of the category of labelled iposets and143

subsumption.144

▶ Definition 3. An ipomset P is an interval ipomset if there exists a pair of functions145

b, e : |P | → R into the real numbers, such that b(x) ≤ e(x) for all x ∈ |P | and we have146

x <P y ⇐⇒ e(x) < b(y) for all x, y ∈ |P |. The pair of functions (b, e) is called an interval147

representation of P . We define iiPom as the set of all interval ipomsets.148

The simplest example of an ipomset that isn’t interval is the ipomset P with |P | =149

{a, b, c, d} with a < b and c < d but where a and b are incomparable with c and d. This is150

the ipomset variant of the (2 + 2)-poset. Given a set of interval ipomsets A ⊆ iiPom, the151

down-closure of A is defined as usual by A↓ = {P ∈ iiPom | ∃Q ∈ A.P ⊑ Q}.152

▶ Definition 4. A language L of interval ipomsets is a down-closed set of interval ipomsets,153

that is, if L↓ ⊆ L holds. We denote by Lang the thin category with languages as objects and154

subset inclusions as morphisms.155

2.2 Composition of ipomsets and languages156

▶ Definition 5. Let P and Q be ipomsets. We say that P and Q sequentially match if there157

is a (necessarily unique) isomorphism f : (TP , 99KP)→ (SQ, 99KQ) with λQ ◦ f = λP . If P158

and Q match sequentially, then we define the gluing composition by159

P ∗Q = (|P ∗Q|, <P ∗Q, 99KP ∗Q, SP , TQ, λP ∗Q) ,160

where (|P∗Q|, 99KP ∗Q) given as the pushout of posets colim
(

(|P |, 99KP)←↩ TP
f−→ (|Q|, 99KQ)

)
161

of f along the inclusion. The precedence order <P ∗Q is the union of the images of <P , <Q162

and (|P | \ TP)× (|Q| \ SQ) in |P ∗Q|. Finally, the labelling function λP ∗Q : |P ∗Q| → Σ is163

defined as the copairing [λP , λQ] on the pushout using that f preserves labelling.164

H. Basold, T. Baronner, M. Hablicsek 23:5

If P and Q are interval ipomsets, then their gluing composition P ∗Q is an interval ipomset165

as well ([11, Lem. 41]). The important point is that the map f , which attaches the interfaces,166

is an order isomorphism and that the event order is linear.167

If the interfaces TP and SQ are empty, then P ∗ Q is the coproduct of (|P |, 99KP)168

and (|Q|, 99KQ), and at the same time the join of (|P |, <P) and (|Q|, <Q) considered as169

categories. This amounts to the serial pomset composition [10], which is the generalisation170

of concatenation of words to pomsets.171

▶ Definition 6. Let L1 and L2 be languages. Then their sequential composition is defined as172

L1 ∗ L2 = {P ∗Q | P ∈ L1, Q ∈ L2, and P and Q match sequentially}↓
173

▶ Definition 7. Let P and Q be ipomsets. We define their parallel composition by174

P ∥ Q =
(
|P |+ |Q|, <P ∥Q, 99KP ∥Q, SP ∥Q, TP ∥Q, λP ∥Q

)
175

Let iP : |P | → |P |+ |Q| and iQ : |Q| → |P |+ |Q| be the canonical injection maps. Using these176

injection maps we define <P ∥Q= iP (<P) ∪ iQ (<Q), SP ∥Q = iP (SP) ∪ iQ (SQ), TP ∥Q =177

iP (TP) ∪ iQ (TQ) and λP ∥Q = [λP , λP]. Then 99KP ∥Q is defined as the ordered sum of the178

event orders, in other words, iP preserves the order 99KP as 99KP ∥Q and iQ preserves 99KQ179

as 99KP ∥Q and for all x ∈ |P |, y ∈ |Q| we have iP (x) 99KP ∥Q iQ(y).180

Differently said, the event order 99KP ∥Q on the parallel composition P ∥ Q is defined as181

the join of (|P |, 99KP ∥Q) and (|Q|, 99KQ) thought of as categories.182

▶ Definition 8. Let L1 and L2 be languages. Then, their parallel composition is defined as183

L1 ∥ L2 = {P ∥ Q | P ∈ L1, Q ∈ L2}↓
184

and the parallel Kleene closure of a language L as185

L(∗) =
⋃

n∈N
L∥n where L∥0 = {ε} and L∥(n+1) = L ∥

(
L∥n

)
186

Down-closure is needed in Definitions 6 and 8, since sequential or parallel compositions187

of down-closed languages may not result in a down-closed language.188

We conclude this section by showing that the parallel composition of languages respects189

small colimits (the proof can be found in Appendix C).190

▶ Lemma 9. For small diagrams M : D → Lang and N : E → Lang of languages we have191 ⋃
(d,e)∈D×E

Md ∥ Ne =
(⋃

d∈D
Md

)
∥
(⋃

e∈E
Ne

)
192

3 Higher-Dimensional Automata193

In this section we first recall the definition of HDA, then discuss the monoidal structure of194

HDA to model parallel computation and finally show in Section 3.3 that the category of195

HDA is locally finitely presented by finite HDA.196

CVIT 2016

23:6 Irrationality of Process Replication for HDA

3.1 The Category of HDA197

Higher-dimensional automata are modelled as labelled precubical sets, which in turn are198

presheaves over a category of basic hypercubes. Such cubes can be represented as ordered199

sets, where the size of the set corresponds to the dimension of the cube, and the morphism200

of the ordered sets determine how the faces of n + 1-cells in a precubical set match with201

n-dimensional faces. We fix from now on an alphabet Σ in which HDA are labelled.202

▶ Definition 10. A labelled linearly ordered set or lo-set (U, 99K, λ) is a finite set U with203

a strict linear order 99K and a labelling map λ : U → Σ. We write ε for the unique empty204

lo-set. A lo-map is a map between lo-sets that preserves the order and the labelling. Lo-sets205

and -maps form a category ℓSLO.206

The category ℓSLO is monoidal with U ⋆ V being the join of U and V considered as thin207

categories and the monoidal unit being the empty set. Explicitly, the underlying set of U ⋆ V208

is the coproduct U + V , the order is given by x 99KU⋆V y iff x 99KU y, x 99KV y, or x ∈ U209

and y ∈ V . The labelling λU⋆V is given by the copairing [λU , λV] : U + V → Σ.210

Note that lo-maps are necessarily injective, which means that morphisms f : U → V in211

ℓSLO are equivalently defined by their image f(U) or their complement V \ f(U). Moreover,212

f is an isomorphism iff f is surjective, i.e. if V \ f(U) = ∅. Since isomorphisms in ℓSLO are213

unique, we can safely identify it with a skeleton that has as objects pairs (n, w) where n ∈ N,214

n is the finite ordinal {0 < · · · < n− 1} with n elements and w ∈ Σn is a word of length n.215

▶ Definition 11. A coface map d : U → V between lo-sets U and V is a triple (f,A,B),216

where f : U → V is a lo-map and {A,B} is a partition of the complement image of f , that is,217

V \f(U) = A∪B and A∩B = ∅. We write d(x) for the application of the underlying map f to218

x to simplify notation. For A,B ⊂ U that are disjoint, we denote by dA,B : U \ (A∪B)→ U219

the coface map (i, A,B), where i : U \ (A ∪B)→ U is the inclusion.220

The monoidal structure on ℓSLO induces a monoidal structure on the category of lo-sets221

and coface maps.222

▶ Lemma 12. The lo-sets and coface maps form a monoidal category (⊡,⊕, I).223

Since isomorphisms in ℓSLO are unique, they are in ⊡ as well and we can use the same224

skeleton as we did for ℓSLO only with the morphisms of ⊡. We denote this small skeleton225

by □.226

▶ Definition 13. A precubical set is a presheaf X : □op → Set and a morphism of precubical227

sets is a natural transformation. They form a category PSh(□). We writeよ for the Yoneda228

embedding □→ PSh(□) withよU = □(−, U).229

We refer to the elements of X[U] as cells and to the cardinality of U as the dimension230

of those cells. If for some U of cardinality n the set X[U] is inhabited and for all V with231

cardinality greater n the sets X[U] are empty, then we say that X has finite dimension n. A232

precubical set X is finite if it has finite dimension and if for all U ∈ □ the set X[U] is finite.233

To lighten notation, we write δA,B for the face map X[dA,B] : X[U] → X[U \ (A ∪B)]234

that is induced by a coface map dA,B : U \ (A ∪B)→ U . The face maps δA,∅ and δ∅,B will235

be suggestively abbreviated to δ0
A and δ1

B .236

▶ Definition 14. A higher-dimensional automaton (HDA) is a tuple
(
X,X⊥, X

⊤) where237

X is a precubical set, X⊥ is a set of starting cells and X⊤ is a set of accepting cells. A238

HDA map f :
(
X,X⊥, X

⊤)→ (
Y, Y⊥, Y

⊤) is a precubical map f : X → Y that preserves the239

starting and accepting cells, that is, f(X⊥) ⊆ Y⊥ and f
(
X⊤) ⊆ Y ⊤. We denote by HDA240

the category of higher-dimensional automata and their maps.241

H. Basold, T. Baronner, M. Hablicsek 23:7

▶ Lemma 15. The forgetful functor F : HDA → PSh(□) has left and right adjoints N242

and T given, respectively, by NX = (X, ∅, ∅) and TX = (X,X,X). Thus, the left adjoint N243

stipulates no starting or accepting cells, while T considers all cells as starting and accepting.244

3.2 Monoidal Structure on HDA245

Our main interest in this paper is to realise (repeated) parallel composition of languages246

as HDA. In this section we briefly discuss how HDA can be synchronised in parallel via a247

monoidal product on HDA.248

▶ Definition 16. The tensor product of HDA is defined by Day convolution [6, 19, 29], which249

is given for HDA X and Y on the precubical sets by the following coend.250

X ⊗ Y =
∫ V,W

□(−, V ⊕W)×X[V]× Y [W]251

The starting cells (X ⊗ Y)⊥ are given as the image of all inclusions252

(X⊥ ∩ X[V]) × (Y⊥ ∩ Y [W]) □(V ⊕ W, V ⊕ W) × X[V] × Y [W] X ⊗ Y253

and analogously for the accepting cells (X ⊗ Y)⊤. A diagram chase shows that ⊗ is well-254

defined on HDA morphisms. The monoidal unit is given by Yoneda embeddingよε of the255

empty lo-set with the only cell in dimension 0 being initial and final. For any U ∈ □, we can256

makeよU an HDA by taking all cells to be initial and final.257

By this definition, the Yoneda embedding becomes a strong monoidal functor and ⊗258

preserves colimits [19]. Moreover, F is clearly a strict monoidal functor. Usually, the tensor259

product of (pre)cubical sets is defined as a coproduct [5, 10, 16, 23] and, in fact, one can260

prove that (X ⊗ Y)(U) ∼=
∐

U=V ⊕W X[V]× Y [W].261

3.3 Filtered Colimits and Compact HDA262

Compact objects in a category can be thought of as the analogue of finite sets, relative to263

what morphisms in that category perceive as finite. For instance, compact objects in the264

category VecR of R-vector spaces are vector spaces with finite dimension. In Set and VecR,265

arguments can be reduced to arguments about compact objects because all objects in those266

categories are given as nice colimits of a set of chosen compact objects. For instance, each267

set U is given as a colimit of finite sets, for example of sets of the form n, by identifying268

these with finite subsets of U and then taking the union. This process is given by so-called269

filtered colimits. The advantage of breaking down objects to filtered colimits of compact270

objects is that construction on objects can be carried out on a set of compact objects instead.271

Categories that admit these kind of reduction are called locally finitely presentable (lfp).272

In what follows, we briefly recall the definition of lfp categories, show that the category273

of HDA is lfp and that the compact objects are precisely the finite HDA.274

We first provide the basics of lfp categories [1, 35]. A category C is called essentially small275

if it is equivalent to a small category. We call a category D filtered if any finite diagram in D276

has a cocone, or equivalently if D is inhabited, (1) for any two objects c, d ∈ D there exists277

an object e ∈ D and two morphisms c→ e← d, and (2) for any two morphisms f, g : c→ d278

there exist an object e ∈ D and a morphism h : d→ e with h ◦ f = h ◦ g. A filtered colimit in279

a category C is a colimit of a diagram F : D → C where D is filtered. We say that an object280

X ∈ C is compact if the hom-functor C(X,−) : C → Set preserves filtered colimits. Finally,281

CVIT 2016

23:8 Irrationality of Process Replication for HDA

the category C is called locally finitely presentable (lfp) if it is cocomplete, the subcategory282

Cc of compact objects is essentially small, and every object in C is isomorphic to a filtered283

colimit of compact objects. Many calculations are simplified by the fact that the category Cc284

is closed under finite colimits [1, Prop. 1.3]. One of the important examples of a lfp category285

is the functor category of precubical sets PSh(□) [1, Example 1.12]. Inside PSh(□) we find286

that the hom-functorよU is compact for all U ∈ □, as a consequence of the Yoneda lemma287

and that colimits in PSh(□) are given point-wise.288

Similarly to PSh(□), the category of HDA is also locally finitely presentable shown by289

the following theorems (see Appendix C for the detailed proofs).290

▶ Theorem 17. The forgetful functor F : HDA→ PSh(□) creates colimits [35, Sec. 3.3]291

and the category of HDA is thus cocomplete.292

▶ Theorem 18. A HDA is compact if and only if it is finite.293

Let I : HDAc → HDA be the inclusion functor of the full subcategory of compact294

HDA in HDA. For a HDA X, we denote by I ↓ X the comma category that has as295

objects morphisms Y → X from a compact HDA Y into X, and morphisms are the evident296

commutative triangles. The comma category I ↓ X is essentially small and closed under297

finite colimits, thus it is a filtered category. We write UX : I ↓ X → HDAc for the domain298

projection functor.299

▶ Theorem 19. Every HDA X can be canonically expressed as the filtered colimit of finite300

HDA, that is, we have X ∼= colimUX .301

▶ Theorem 20. The category of HDA is locally finitely presentable.302

Proof. First of all, HDA is cocomplete by Theorem 17. Theorem 19 shows that any HDA303

is given as filtered colimit of compact HDA. Since by Theorem 18 the compact HDA are304

finite HDA, we have that HDAc is essentially small. Thus, HDA is a lfp category. ◀305

4 Languages of Higher-Dimensional Automata306

Computations as modelled by HDA can be expressed as higher-dimensional paths running307

through the HDA from a starting cell to an accepting cell. Each of these accepting paths308

corresponds to an interval ipomset, which allows us to define the languages of HDA as the309

set of interval ipomsets it accepts. We expand here on previous work [10] by also including310

infinite HDA and by showing that HDA languages preserve coproducts and filtered colimits.311

4.1 Paths and languages312

Let us start by defining paths and their labelling.313

▶ Definition 21. A path in a precubical set or HDA X is a (finite) sequence314

α = (x0, φ1, x1, φ2, ..., φn, xn)315

where the xk ∈ X [Uk] are cells for objects Uk of □ and for all 1 ≤ k ≤ n we have either316

An up-step: φk = d0
A ∈ □ (Uk−1, Uk), with xk−1 = δ0

A (xk), or317

a down-step: φk = d1
B ∈ □ (Uk, Uk−1), with δ1

B (xk−1) = xk.318

The elements xk define cells while the φk define how these cells are connected. Since for a319

path we cannot have δ0
A (xk−1) = xk or xk−1 = δ1

B (xk) it can only move along the direction320

of the arrows. Two paths where the first ends at the cell the other starts in can be composed321

in the following intuitive manner.322

H. Basold, T. Baronner, M. Hablicsek 23:9

▶ Definition 22. Let α = (x0, φ1, x1, ..., φn, xn) and β = (y0, ψ1, y1, ..., ψm, ym) be two paths323

in a precubical set or HDA X with xn = y0. Then we define their concatenation α ∗ β as324

α ∗ β = (x0, φ1, x1, ..., φn, xn, ψ1, y1, ..., ψm, ym)325

which is a path in X as well.326

Every path α = (x0, φ1, x1, ..., φn, xn) can therefore be broken down into paths of length327

1, called steps. We can denote a step (xk−1, φk, xk) with xk−1 ↗A xk if φk = d0
A (an up328

step) or with xk−1 ↘B xk if φk = d1
B (a down step). We get the unique representation329

(x0, φ1, x1)∗ (x1, φ2, x2)∗ ...∗ (xn−1, φn, xn) for the path α. Using this we define the labelling330

of paths recursively.331

▶ Definition 23. Let X be a precubical set or HDA. Let α be a path in X, let U and V be332

objects in □ and let x ∈ X[U], y ∈ X[V]. Then the labelling ev (α) of α is the ipomset that333

is computed as follows:334

If α = (x) is a path of length 0 then its label is335

ev (α) = (U, ∅, 99KU , U, U, λU)336

If α = (x, φ, y) is a path with x↗A y then its label is337

ev (α) = (V, ∅, 99KV , V \A, V, λV)338

If α = (x, φ, y) is a path with x↘B y then its label is339

ev (α) = (U, ∅, 99KU , U, U\B, λU)340

If α = β1 ∗ β2 ∗ ... ∗ βn the concatenation of steps β1, β2, ..., βn then its label is the gluing341

composition of ipomsets ev (α) = ev (β1) ∗ ev (β2) ∗ ... ∗ ev (βn).342

The labels of paths of length 0 or 1 are trivially interval ipomsets, since the relation < is343

empty. Since the labelling of paths of length greater than 1 is defined as the concatenation344

of the labels of its steps it follows that they are interval ipomsets as well.345

For a precubical set or HDA X we define PX as the set of paths in X. For a path346

α = (x0, φ1, x1, ..., φn, xn) we call ℓ (α) = x0 the source and r (α) = xn the target of the347

path. We can now define the languages of HDA.348

▶ Definition 24. The language of a HDA X is defined as the set of interval ipomsets349

L(X) =
{

ev (α) | α ∈ PX , ℓ (α) ∈ X⊥, r (α) ∈ X⊤}
350

We refer to a path α with ℓ (α) ∈ X⊥ and r (α) ∈ X⊤ as an accepting path. In Theorem 30351

we will prove that for each HDA X the language L(X) of X is a down-closed interval ipomset352

language as defined in Definition 4. Let X and Y be precubical sets with the precubical map353

f : X → Y . For each path α = (x0, φ1, x1, ..., φn, xn) in X with xk ∈ X [Uk] we define354

f (α) = (f [U0] (x0) , φ1, f [U1] (x1) , ..., φn, f [Un] (xn)) which by definition of the precubical355

maps is a path in Y . With this we get two lemmas regarding the way precubical maps and356

HDA maps preserve paths and languages.357

▶ Lemma 25. Let X and Y be precubical sets and let f : X → Y be a precubical map.358

Suppose that we have α, β ∈ PX with ℓ (α) = r (β). Then we have ev (α ∗ β) = ev (α) ∗ev (β)359

and ev (f (α)) = ev (α).360

▶ Lemma 26. Let X and Y be HDA and let f : X → Y be a HDA map. Then we have361

L(X) ⊆ L(Y). If f is an isomorphism then we have L(X) = L(Y).362

CVIT 2016

23:10 Irrationality of Process Replication for HDA

4.2 Composition of HDA and their languages363

We want to know the relation between the languages of diagrams of HDA and the languages364

of their colimits. We start with a theorem that is relevant for all colimits and cocones.365

▶ Theorem 27. Let (X,ϕ) be a cocone of the small diagram F : D → HDA. Then we have366 ⋃
d∈D L (F (d)) ⊆ L(X).367

Proof. For every d ∈ D we have the HDA map ϕ(d) : F (d)→ X. Lemma 26 then gives us368

that L (F (d)) ⊆ L(X), from which the statement follows. ◀369

We get equality in the case that (X,ϕ) is a coproduct or a filtered colimit, as we will prove370

with the next two theorems.371

▶ Theorem 28. Let D be a small category and let F : D → HDA be a small discrete372

diagram of HDA with the coproduct (X,ϕ). Then we have
⋃

d∈D L (F (d)) = L(X).373

Proof. Suppose that we have P ∈ L(X). Then there exists an accepting path α =374

(x0, φ1, x1, ..., φn, xn) in X with r(α) ∈ X⊥ and ℓ(α) ∈ X⊤ such that ev(α) = P .375

Lemma 46 gives us that for each xk ∈ X [Uk] for 1 ≤ k ≤ n and the object Uk ∈ □ there376

exists a unique dk ∈ D and a unique yk ∈ F (d) [Uk] such that ϕdk
[Uk] (yk) = xk. It also377

gives us that y1 ∈ F (d1)⊥ and yn ∈ F (dn)⊥.378

Suppose that we have xk = δ0
A (xk+1). Because we have379

ϕdk
[Uk] (yk) = xk = δ0

A (xk+1) = δ0
A ◦ ϕdk+1 [Uk+1] (yk+1) = ϕdk

[Uk] ◦ δ0
A (yk+1)380

we get yk ∼ δ0
A (yk+1) which because of Lemma 46 gives us dk = dk+1 and yk = δ0

A (yk+1).381

Analogously the same works for if we have δ1
B (xk) = xk+1.382

Therefore there exists an accepting path α′ = (y0, φ1, y1, ..., φn, yn) in F (d) with d =383

d1 = d2 = ... = dn such that ϕd (α′) = α. Lemma 25 gives us that P = ev(α) = ev (α′) and384

therefore ev (α′) ∈ L (F (d)). As a result we have that P ∈ L(X) =⇒ P ∈
⋃

d∈D L (F (d)).385

Combined with Theorem 27 this proves the statement. ◀386

▶ Theorem 29. Let D be a small category and let F : D → HDA be a small filtered diagram387

of HDA with the filtered colimit (X,ϕ). Then we have
⋃

d∈D L (F (d)) = L(X).388

Proof. Suppose that we have P ∈ L(X). Then there exists a path α in X with r(α) ∈ X⊥389

and ℓ(α) ∈ X⊤ such that ev(α) = P . Let α = (x0, φ1, x1, ..., φn, xn). Lemma 48 then gives390

us that there exists a d ∈ D and a path α′ = (y0, φ1, y1, ..., φn, yn) such that ϕd (α′) = α391

(note that a path in this case can be seen as a finite set S). Because of Lemma 46 we can392

then assume that this path is accepting. This gives us that ev (α′) = P ∈
⋃

d∈D L (F (d))393

which proves the statement in combination with Theorem 27. ◀394

The theorem above together with Theorem 19 shows that all infinite HDA can be expressed395

using finite HDA respecting the corresponding languages. This powerful tool allows us to396

prove statements about the languages of HDA in a simple way by using the filtered colimits397

of finite HDA demonstrated by the following theorem.398

▶ Theorem 30. The languages of HDA are down-closed interval ipomset languages.399

Proof. For finite HDA X, L(X) is a language by [10, Prop. 10]. Suppose that X is an400

arbitrary HDA. From Theorem 19 we get a filtered diagram F : D → HDA of finite HDA401

such that X ∼= colimd∈D F (d). Lemma 26 and Theorem 29 then give us that402

L(X) = L
(

colim
d∈D

F (d)
)

=
⋃

d∈D
L (F (d))403

H. Basold, T. Baronner, M. Hablicsek 23:11

Every P ∈ L(X) is therefore contained in one L (F (d)) which means that L(X) is a down-404

closed interval ipomset language as required. ◀405

Since Lang is the category with as objects down-closed interval ipomset languages and406

as morphisms the subset inclusion maps the theorem above and Lemma 26 allow us to407

see L as a functor L : HDA → Lang. Since the colimit of a diagram of languages is the408

union Theorem 28 and Theorem 29 give us that L preserves coproducts and filtered colimits.409

However, it does not preserve all colimits as we show with the next theorem.410

▶ Theorem 31. There is a diagram F : D → HDA, such that
⋃

d∈D L (F (d)) ⊊ L(colimF).411

Proof. We use for D be the category of shape 1← 2→ 3. Consider the following pushout of412

HDA, which is a colimit over a diagram of shape D.413

(◦) (⇒ • a−→ ◦)

(◦ c−→ • ⇒) (⇒ • a−→ • c−→ • ⇒)

i2

i1

⌟

414

The inclusions ik map ◦ to ◦ and the double arrows indicate starting and accepting cells.415

Note that the languages of the HDA at the corners are all empty, except of the HDA at the416

bottom right corner, which accepts the word (a → c). Thus the pushout colimit of HDA417

with empty languages may result in a strictly larger language. ◀418

Finally, we prove that the language of the tensor product of two HDA is the same as the419

parallel composition of their two individual languages.420

▶ Theorem 32. The functor L is a strict monoidal functor (HDA,⊗, I)→ (Lang, ∥, {ε}).421

Proof. Let X and Y be HDA. We have to show that L (X ⊗ Y) = L (X) ∥ L (Y). Theorem 19422

gives us that there exist filtered diagrams F : D → HDA and G : E → HDA of finite HDA423

with X and Y being their respective filtered colimits. This allows us to generalise [10,424

Prop. 19], where L(X ⊗ Y) = L(X) ∥ L(Y) is proved for finite HDA, to arbitrary HDA.425

L (X ⊗ Y) = L
(

colim
(d,e)∈D×E

F (d)⊗G(e)
)

tensor product preserves colimits426

=
⋃

(d,e)∈D×E
L (F (d)⊗G(e)) by Theorem 29427

=
⋃

(d,e)∈D×E
L (F (d)) ∥ L (G(e)) [10, Prop. 19] applies to finite HDA428

=
⋃

d∈D
L (F (d)) ∥

⋃
e∈E

L (G(e)) by Lemma 9429

= L(X) ∥ L(Y) by Theorem 29430

This shows that even for arbitrary HDA the parallel composition of their languages is given431

by tensoring the HDA. That L(I) = {ε} is obvious. ◀432

5 Process Replication as Rational HDA433

In this section, we seek to complete the correspondence between concurrent Kleene algebras434

and HDA, which requires us to identify a notion of rational HDA that can capture finitary435

behaviour. This has almost been accomplished [10] but the parallel closure could not be436

realised as finite HDA. For regular languages, linear weighted languages and various other437

CVIT 2016

23:12 Irrationality of Process Replication for HDA

languages without true concurrency, the correspondence between languages and automata438

has been studied from a coalgebraic perspective [4, 30, 31]. We make in Section 5.1 a first439

attempt and follows these ideas by studying locally compact HDA and show how to realise440

the parallel closure as locally compact HDA. However, we will see that this model is too441

powerful and will restrict to finitely branching HDA in Section 5.2. These can realise the442

parallel Kleene star as well, but will require an infinite choice at the start. Thus, none of443

these choices is satisfactory to act as rational HDA and we show that it is impossible to444

realise the parallel closure as finitely branching HDA with finitely many starting cells.445

5.1 Locally Compact HDA446

Let us first define what we mean by locally compact HDA. This follows work on rational447

coalgebraic behaviour [31, 30] and can be seen as axiomatisation of the factorisation property448

that filtered colimits enjoy in lfp categories.449

▶ Definition 33. A HDA
(
X,X⊥, X

⊤) is locally compact if for all morphism f : P → X from450

a compact precubical set P there is an essentially unique factorisation of f into P f ′

−→ Y
h−→ X,451

where
(
Y, Y⊥, Y

⊤) ∈ HDAc, and h :
(
X,X⊥, X

⊤)→ (
Y, Y⊥, Y

⊤) is a HDA morphism. Here,452

essentially unique means that if there is any other f ′′ : P → Y with h ◦ f ′′ = f , then there453

exists
(
R,R⊥, R

⊤) ∈ HDAc and an HDA morphism e :
(
Y, Y⊥, Y

⊤) → (
R,R⊥, R

⊤) such454

that e ◦ f ′ = e ◦ f ′′.455

Differently said, we say that
(
X,X⊥, X

⊤) is locally compact if the forgetful map F :456

HDAc ↓ X → PSh(□)c ↓ X is cofinal. Since lfp categories admit (strong epi, mono)457

factorisation systems, essential uniqueness holds for any factorisation.458

▶ Theorem 34. A HDA
(
X,X⊥, X

⊤) is locally compact if and only if f : P → X factors as459

in Definition 33, that is, essential uniqueness of the factorisation is automatically given.460

Since morphisms into filtered colimits factor essentially uniquely through the colimit461

inclusion, HDA given by a filtered colimit of compact HDA are locally compact. The other462

way around this is also true.463

▶ Theorem 35. If X is locally compact iff X ∼= colimUX and thus by Theorem 19 any HDA464

is locally compact.465

This theorem shows that local compactness is no restriction in the case of HDA, contrary to466

other computational models. Let us, nevertheless, apply the lessons of local compactness to467

get closer to an HDA that models process replication in a reasonably finitary way. Before468

that, let us warm up and construct a HDA as a filtered colimit with infinite branching.469

▶ Example 36. Let F : D → HDAc be the diagram given by470

0 1a −→

2

0 1a

a

−→

3

2

0 1a

a
a

−→ · · ·471

This is a chain and thus filtered, and its colimit a HDA with infinitely many branches coming472

out of 0. Nevertheless, since each HDA in the chain is compact, colimF is locally compact.473

▶ Example 37. Similarly to Example 36, we can also branch with higher dimensions and474

thus realise process replication as filtered colimit of compact HDA. For the purpose of this475

H. Basold, T. Baronner, M. Hablicsek 23:13

0 •a

d1−→ • •

0 •a

a a

a d2−→

• •

• •

• •

0 •a

a

a

a

a

a

a

a

a

aa
d3−→ · · ·

Figure 2 Chain of HDA to construct process replication of the HDA A on the left, where all
higher dimensional cells are present but not displayed

example it is easier to ignore starting cells. It is easy to see that the tensor product and476

colimits work for HDA without starting cells in the same way.477

Let A be the HDA with one 1-cell labelled with a and the endpoint of this 1-cell taken478

as accepting. This is illustrated in Figure 2 on the left, where the double arrows mark an479

accepting cells. The maps dn : An → An+1 in Figure 2, where A1 = A, are constructed as in480

the following pushout diagram. In this diagram, we denote by A⊗n the n-fold tensor product481

of A with itself, where A⊗0 = I. For an HDA X, we write Xε for the HDA that has the482

same underlying precubical set but no starting and accepting states.483

A⊗n,ε A⊗n,ε ⊗ I A⊗n+1 A⊗n+1,ε

An An+1

∼=

in

dn

⌟

in+1484

The indicated maps dn form a chain and thus a filtered diagram. By taking the colimit of485

this chain and declaring the cell marked 0 as starting cell, we obtain an HDA that accepts486

L(A)(∗), the parallel Kleene closure of the language of A. That this is the case follows directly487

from Theorem 32 and Theorem 29.488

5.2 Finitely Branching HDA489

The HDA that we constructed in Example 37 has the pleasant property that during execution490

many a-processes can be spawned, as one would expect from a process replication operator491

that occurs in process algebra. However, the HDA in Example 37 has infinitely many cells492

branching out of any. This makes it impossible to realise this HDA on a physical machine493

and motivates another possible definition of what one may consider rational HDAs.494

▶ Definition 38. A HDA X is finitely branching if for all n and all x ∈ Xn the set495

{y ∈ Xn+1 | δA,B(y) = x} is finite. We denote by HDAfb the full subcategory of HDA that496

consists of finitely branching HDA.497

Clearly, finitely branching HDA are not closed under filtered colimits, as Example 36498

shows. However, they are closed under coproducts.499

▶ Theorem 39. Let F : D → HDAfb a diagram on a small discrete category D. Then the500

colimit (coproduct) colimF exists in HDAfb.501

The parallel Kleene star of a finitely branching HDA X, also known as process replication,502

can be realised as finitely branching HDA. We write X⊗n for the n-fold tensor product of X503

with itself, where X⊗0 = I, and define the parallel replication of X to be !X =
∐

n inNX
⊗n.504

CVIT 2016

23:14 Irrationality of Process Replication for HDA

1 •a

• •

2 •a

a a

a

• •

• •

• •

3 •a

a

a

a

a

a

a

a

a

aa

· · ·

Figure 3 Finitely branching HDA for process replication of A constructed as coproduct, where
the cells labelled 1, 2, 3, . . . are all starting cells and the double arrows indicate accepting cells

▶ Theorem 40. The HDA !X is finitely branching and we have L(!X) = L(X)(∗).505

Proof. By Theorem 28 and Theorem 32 we have506

L(!X) = L
(∐

n∈N
X⊗n

)
=
⋃

n∈N
L
(
X⊗n

)
=
⋃

n∈N
L(X)∥n = L(X)(∗) ◀507

The caveat of this theorem, and the definition of finitely branching in general, is that we508

do not make any restrictions on the number of starting cells. In fact, !X will have infinitely509

many starting cells, if X has at least one.510

▶ Example 41. Let A again be the HDA as in Example 37. The HDA !A looks as in Figure 3.511

Notice that it consists of little finite islands, each with a starting cell. During an execution,512

the HDA has to make at the beginning of the execution a choice on the number of parallel513

executions of the action a. This means that this HDA is not realisable, as such a guess514

requires knowledge about how many parallel processes will be needed. For instance, a web515

server would need to know when it is started how many clients will connect during its life516

time. This is clearly impossible.517

The Examples 37 and 41 show that either way of realising process replication, as locally518

compact HDA or as finitely branching HDA, leads to operational problems. In fact, it is not519

possible to realise process replication as finitely branching HDA with finite starting cells.520

▶ Theorem 42. There is no HDA X ∈ HDAfb with finite initial states, such that X would521

realise the parallel Kleene star of L(A) = {(a)}.522

6 Conclusion523

What does this leave us with? The problem is that HDA combine state space and transitions524

into one object, a precubical set. Intuitively, this prevents us from having transitions and525

cycles among cells of higher dimension. More technically, the locally compact HDA allow526

infinite branching, while finite branching limits the number of active parallel events to be527

finite. This can be compared to the coalgebras for the finite powerset functor, also known528

as finitely branching transition systems. Here, locally compact transition systems may only529

have finite branching and thus realise locally the behaviour of finite transition systems, as530

one would expect. Therefore, one is led to the conclusion that HDA as a computational531

model are unsuited to model process replication and another model for true concurrency has532

to be sought. In fact, the examples show us what is wrong: we should treat (pre)cubical sets533

X as the state space of an automaton and the consider endofunctors F on PSh(□) to model534

behaviour types and transitions as coalgebras X → FX. This will be our next step in the535

investigation of finitary behaviour in models of true concurrency.536

H. Basold, T. Baronner, M. Hablicsek 23:15

References537

1 J. Adamek and J. Rosicky. Locally Presentable and Accessible Categories. London Math-538

ematical Society Lecture Note Series. Cambridge University Press, 1994. doi:10.1017/539

CBO9780511600579.540

2 S. Awodey. Category Theory. Oxford Logic Guides. Ebsco Publishing, 2006. URL: https:541

//books.google.nl/books?id=IK_sIDI2TCwC.542

3 Thomas Baronner. Finite Accessibility of Higher-Dimensional Automata and Unbounded543

Parallelism of Their Languages. Bachelor’s Thesis, Leiden University, December 2022.544

4 Marcello M. Bonsangue, Stefan Milius, and Alexandra Silva. Sound and Complete Axiomat-545

izations of Coalgebraic Language Equivalence. ACM Trans. Comput. Logic, 14(1):7:1–7:52,546

February 2013. doi:10.1145/2422085.2422092.547

5 Ronald Brown and Philip J. Higgins. Tensor products and homotopies for ω-groupoids548

and crossed complexes. Journal of Pure and Applied Algebra, 47(1):1–33, January 1987.549

doi:10.1016/0022-4049(87)90099-5.550

6 Brian J. Day. Construction of Biclosed Categories. PhD thesis, University of New South551

Wales, September 1970. URL: http://web.science.mq.edu.au/~street/DayPhD.pdf.552

7 Zoltán Ésik and Zoltán L. Németh. Higher Dimensional Automata. Journal of Automata,553

9(1):329, 2004. doi:10.25596/JALC-2004-003.554

8 Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemianski. Languages555

of Higher-Dimensional Automata. Math. Struct. Comput. Sci., 31(5):575–613, 2021. doi:556

10.1017/S0960129521000293.557

9 Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. A Kleene The-558

orem for Higher-Dimensional Automata. In Bartek Klin, Sławomir Lasota, and Anca Muscholl,559

editors, CONCUR 2022, volume 243 of Leibniz International Proceedings in Informatics560

(LIPIcs), pages 29:1–29:18, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für561

Informatik. doi:10.4230/LIPIcs.CONCUR.2022.29.562

10 Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. A Kleene563

Theorem for Higher-Dimensional Automata, February 2022. arXiv:2202.03791v2.564

11 Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. Languages of565

higher-dimensional automata, 2021. arXiv:2103.07557.566

12 Uli Fahrenberg and Axel Legay. History-Preserving Bisimilarity for Higher-Dimensional567

Automata via Open Maps. In Proceedings of MFPS 29, pages 165–178, 2013. doi:10.1016/j.568

entcs.2013.09.012.569

13 Lisbeth Fajstrup, Eric Goubault, and Martin Raußen. Detecting Deadlocks in Concurrent570

Systems. In CONCUR ’98: Concurrency Theory, 9th International Conference, Nice, France,571

September 8-11, 1998, Proceedings, pages 332–347, 1998. doi:10.1007/BFb0055632.572

14 Eric Goubault. Geometry and concurrency: A user’s guide. Math. Struct. Comput. Sci.,573

10(4):411–425, 2000. URL: http://journals.cambridge.org/action/displayAbstract?574

aid=54593.575

15 J. Grabowski. On partial languages. Fundam. Informaticae, 4(2):427, 1981.576

16 Marco Grandis. Directed Algebraic Topology: Models of Non-Reversible Worlds. New577

Mathematical Monographs. Cambridge University Press, Cambridge, 2009. doi:10.1017/578

CBO9780511657474.579

17 C. A. R. Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene580

Algebra. In Mario Bravetti and Gianluigi Zavattaro, editors, CONCUR 2009 - Concurrency581

Theory, Lecture Notes in Computer Science, pages 399–414, Berlin, Heidelberg, 2009. Springer.582

doi:10.1007/978-3-642-04081-8_27.583

18 Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene Algebra584

and its Foundations. The Journal of Logic and Algebraic Programming, 80(6):266–296, August585

2011. doi:10.1016/j.jlap.2011.04.005.586

CVIT 2016

https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1017/CBO9780511600579
https://books.google.nl/books?id=IK_sIDI2TCwC
https://books.google.nl/books?id=IK_sIDI2TCwC
https://books.google.nl/books?id=IK_sIDI2TCwC
https://doi.org/10.1145/2422085.2422092
https://doi.org/10.1016/0022-4049(87)90099-5
http://web.science.mq.edu.au/~street/DayPhD.pdf
https://doi.org/10.25596/JALC-2004-003
https://doi.org/10.1017/S0960129521000293
https://doi.org/10.1017/S0960129521000293
https://doi.org/10.1017/S0960129521000293
https://doi.org/10.4230/LIPIcs.CONCUR.2022.29
https://arxiv.org/abs/2202.03791v2
https://arxiv.org/abs/2103.07557
https://doi.org/10.1016/j.entcs.2013.09.012
https://doi.org/10.1016/j.entcs.2013.09.012
https://doi.org/10.1016/j.entcs.2013.09.012
https://doi.org/10.1007/BFb0055632
http://journals.cambridge.org/action/displayAbstract?aid=54593
http://journals.cambridge.org/action/displayAbstract?aid=54593
http://journals.cambridge.org/action/displayAbstract?aid=54593
https://doi.org/10.1017/CBO9780511657474
https://doi.org/10.1017/CBO9780511657474
https://doi.org/10.1017/CBO9780511657474
https://doi.org/10.1007/978-3-642-04081-8_27
https://doi.org/10.1016/j.jlap.2011.04.005

23:16 Irrationality of Process Replication for HDA

19 Geun Bin Im and G. M. Kelly. A universal property of the convolution monoidal struc-587

ture. Journal of Pure and Applied Algebra, 43(1):75–88, November 1986. doi:10.1016/588

0022-4049(86)90005-8.589

20 Peter Jipsen and M. Andrew Moshier. Concurrent Kleene algebra with tests and branching590

automata. Journal of Logical and Algebraic Methods in Programming, 85(4):637–652, June591

2016. doi:10.1016/j.jlamp.2015.12.005.592

21 Thomas Kahl. The homology graph of a precubical set. Homology, Homotopy and Applications,593

16(1):119–138, 2014.594

22 Thomas Kahl. Labeled homology of higher-dimensional automata. J. Appl. Comput. Topol.,595

2(3-4):271–300, 2018. doi:10.1007/s41468-019-00023-0.596

23 Daniel M. Kan. Abstract Homotopy. I. Proceedings of the National Academy of Sciences of597

the United States of America, 41(12):1092–1096, 1955. URL: http://www.jstor.org/stable/598

89108, arXiv:89108.599

24 Tobias Kappé. Concurrent Kleene Algebra: Completeness and Decidability. Doctoral, UCL600

(University College London), September 2020. URL: https://discovery.ucl.ac.uk/id/601

eprint/10109361/.602

25 Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva, and Fabio Zanasi. Brzozowski Goes603

Concurrent - A Kleene Theorem for Pomset Languages. In Roland Meyer and Uwe Nestmann,604

editors, 28th International Conference on Concurrency Theory (CONCUR 2017), volume 85605

of LIPIcs, pages 25:1–25:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum606

fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2017.25.607

26 Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva, and Fabio Zanasi. On series-parallel608

pomset languages: Rationality, context-freeness and automata. JLAMP, 103:130–153, February609

2019. doi:10.1016/j.jlamp.2018.12.001.610

27 Tom Leinster. Basic category theory, volume 143. Cambridge University Press, 2014.611

28 K Lodaya and P Weil. Series–parallel languages and the bounded-width property. Theoretical612

Computer Science, 237(1):347–380, April 2000. doi:10.1016/S0304-3975(00)00031-1.613

29 Fosco Loregian. Coend calculus, December 2020. arXiv:1501.02503, doi:10.48550/arXiv.614

1501.02503.615

30 Stefan Milius. A Sound and Complete Calculus for Finite Stream Circuits. In Proceedings of616

LICS 2010, pages 421–430, 2010. doi:10.1109/LICS.2010.11.617

31 Stefan Milius, Marcello M. Bonsangue, Robert S. R. Myers, and Jurriaan Rot. Rational618

Operational Models. In Proceedings of MFPS 29, pages 257–282, 2013. doi:10.1016/j.entcs.619

2013.09.017.620

32 Vaughan R. Pratt. Modeling Concurrency with Geometry. In Conference Record of the621

Eighteenth Annual ACM Symposium on Principles of Programming Languages (POPL), pages622

311–322, 1991. doi:10.1145/99583.99625.623

33 Vaughan R. Pratt. Arithmetic + Logic + Geometry = Concurrency. In Proc. of LATIN624

’92, 1st Latin American Symposium on Theoretical Informatics, pages 430–447, 1992. doi:625

10.1007/BFb0023846.626

34 Martin Raussen. Connectivity of spaces of directed paths in geometric models for concurrent627

computation. CoRR, abs/2106.11703, 2021. URL: https://arxiv.org/abs/2106.11703.628

35 Emily Riehl. Category Theory in Context. Aurora: Dover Modern Math Originals. Dover629

Publications, 2016. URL: http://www.math.jhu.edu/~eriehl/context/.630

36 Rob J. van Glabbeek. On the expressiveness of higher dimensional automata. Theor. Comput.631

Sci., 356(3):265–290, 2006. doi:10.1016/j.tcs.2006.02.012.632

https://doi.org/10.1016/0022-4049(86)90005-8
https://doi.org/10.1016/0022-4049(86)90005-8
https://doi.org/10.1016/0022-4049(86)90005-8
https://doi.org/10.1016/j.jlamp.2015.12.005
https://doi.org/10.1007/s41468-019-00023-0
http://www.jstor.org/stable/89108
http://www.jstor.org/stable/89108
http://www.jstor.org/stable/89108
https://arxiv.org/abs/89108
https://discovery.ucl.ac.uk/id/eprint/10109361/
https://discovery.ucl.ac.uk/id/eprint/10109361/
https://discovery.ucl.ac.uk/id/eprint/10109361/
https://doi.org/10.4230/LIPIcs.CONCUR.2017.25
https://doi.org/10.1016/j.jlamp.2018.12.001
https://doi.org/10.1016/S0304-3975(00)00031-1
https://arxiv.org/abs/1501.02503
https://doi.org/10.48550/arXiv.1501.02503
https://doi.org/10.48550/arXiv.1501.02503
https://doi.org/10.48550/arXiv.1501.02503
https://doi.org/10.1109/LICS.2010.11
https://doi.org/10.1016/j.entcs.2013.09.017
https://doi.org/10.1016/j.entcs.2013.09.017
https://doi.org/10.1016/j.entcs.2013.09.017
https://doi.org/10.1145/99583.99625
https://doi.org/10.1007/BFb0023846
https://doi.org/10.1007/BFb0023846
https://doi.org/10.1007/BFb0023846
https://arxiv.org/abs/2106.11703
http://www.math.jhu.edu/~eriehl/context/
https://doi.org/10.1016/j.tcs.2006.02.012

H. Basold, T. Baronner, M. Hablicsek 23:17

A Notation633

Notation Macro Meaning
C \StdCat{C} Standard or specific categories
Set \SetC Category of sets
Top \TopC Category of topological spaces
よ \Yo Yoneda embedding
Σ \Sigma Fixed alphabet
|P | \car{P} Carrier of iposet P

A↓ \downCl{A} Downwards closure
ε \emptyLO empty lo-set
ℓSLO \lSLO category of labelled strict linear orders
⋆ \sloTens monoidal product of ℓSLO
n \fOrd{n} finite ordinal with n elements (possibly empty!)
[n] \spine{n} finite ordinal with n + 1 elements (spine of n-simplex)
⊡ \FCube Full labelled precube category
□ \Cube Labelled precube category (skeletal)
dA,B \d_{A,B} Coface map arising from the inclusion U \ (A ∪ B) → U

HDA \HDA Category of HDA
C \Cat{C} Generic category
Cop \op{\Cat{C}} Opposite category
PSh(I) \presheaf{\Cat{I}} Set-Valued presheaves indexed by I
X⊥ \sCells{X} Starting cells of HDA
X⊤ \aCells{X} Accepting cells of HDA(
X, X⊥, X⊤) \HDATup{X} Tuple that makes an HDA

Lang \Lang Category of languages
iiPom \iiPoms The set of interval ipomsets

634

635

B Convolution Product on HDA636

B.1 Day Convolution Precubical Sets is Coproduct637

In Definition 16 we defined the tensor products of HDA as extending the tensor product of638

precubical sets given by Day convolution with appropriate starting and accepting cells. We639

show here that the coend formula640

X ⊗ Y =
∫ V,W

□(−, V ⊕W)×X[V]× Y [W] (1)641

for Day convolution reduces to a coproduct formula642

(X ⊗ Y)(U) ∼=
∐

U=V ⊕W

X[V]× Y [W] (2)643

and thus reduces to the standard definition [5, 16, 23]644

Recall that objects in ℓSLO are pairs (n, w) where n ∈ N and w is a word of length645

n over Σ. Let us write in,j : n → n + 1 for the unique map that does not have j in its646

image. Clearly, any map (n, w) → (n + 1, w′) is determined by the embedding maps in,j .647

Therefore, we will leave out in the remainder the words w and pretend that ℓSLO consists648

of unlabelled finite ordinals n. Further, a map d : n → n + 1 in □ comes with a partition649

of the complement image and is therefore given by either (in,j , {j}, ∅) or (in,j , ∅, {j}). For650

CVIT 2016

23:18 Irrationality of Process Replication for HDA

what follows, this duplication of morphisms also makes no difference and we focus attention651

on the maps in,j .652

The strategy to show that Equation (2) holds is to show that any cowedge for the coend653

in Equation (1) is uniquely determined by a cocone for the coproduct in Equation (2). Write654

Fn,X,Y : □×□×□op ×□op → Set for the functor given by655

Fn,X,Y (m,k,m′,k′) = □(n,m⊕ k)×Xm′ × Yk′656

on objects, which gives us (X⊗Y)n =
∫m,k

Fn,X,Y (m,k,m,k). Suppose now that f : F → C657

is a cowedge, which means that it consists of maps fm,k : □(n,m⊕ k)×Xm × Yk → C in658

Set, such that the following diagram commutes for all u : m→m′ and v : k→ k′.659

□(n, m′ ⊕ k′) × Xm′ × Yk′

□(n, m ⊕ k) × Xm′ × Yk′ C

□(n, m ⊕ k) × Xm × Yk

fm′,k′

id ×X(u)×Y (v)

□(n,u⊕v)×id × id

fm,k

660

Suppose now that n = m+ k and consider the following diagram, which commutes for all661

appropriate choices of j since f is a cowedge.662

□(n, (m + 1) ⊕ (k − 1)) × Xm+1 × Yk−1

□(n, (m + 1) ⊕ (k − 1)) × Xm+1 × Yk

□(n, (m + 1) ⊕ k) × Xm+1 × Yk C

□(n, m ⊕ k) × Xm+1 × Yk

□(n, m ⊕ k) × Xm × Yk

fm+1,k

id ×X(im,j)×id

□(n,im,j⊕id)×id

fm,k

□(n,id ⊕ik−1,j)×id

id × id ×Y (ik−1,j)

fm+1,k−1

663

But then fm+1,k is determined from fm+1,k−1 and fm,k, since any map n→ (m + 1)⊕ k664

is uniquely determined by the only number j that is not in its image. These are exactly665

the maps obtained as the image of the maps □(n, im,j ⊕ id) and □(n, id⊕ik−1,j). Hence,666

the parts in the coend of Equation (1) where n < k +m do not contribute and it suffices to667

consider splittings of n = m+ k. This gives us Equation (2).668

C Proofs669

C.1 Proofs for Section 2670

Proof of Lemma 9 on Page 5. Let L1 =
⋃

(d,e)∈D×E Md ∥ Ne and L2 =
(⋃

d∈D Md

)
∥671 (⋃

e∈E Ne

)
.672

H. Basold, T. Baronner, M. Hablicsek 23:19

Suppose that R ∈ L1. Then there exist d ∈ D and e ∈ E such that R ∈ Md ∥ Ne.673

Then there exists a P ∈Md and a Q ∈ Ne such that R ⊑ P ∥ Q. Since P ∈
⋃

d∈D Md and674

Q ∈
⋃

e∈E Ne this means that P ∥ Q ∈ L2 and therefore R ∈ L2. This gives us L1 ⊆ L2.675

Suppose that R ∈ L2. Then there exists a P ∈
⋃

d∈D Md and a Q ∈
⋃

e∈E Ne such that676

R ⊑ P ∥ Q. Therefore there exist d ∈ D and e ∈ E such that P ∈ Md and Q ∈ Ne, which677

means that P ∥ Q ∈Md ∥ Ne and therefore P ∥ Q ∈ L1. This gives us R ∈ L1 and therefore678

L1 ⊇ L2 which means that we have L1 = L2. ◀679

C.2 Proofs for Section 3.1680

Proof of Lemma 12 on Page 6. Composition of (e, C,D) : V → W and (d,A,B) : U → V681

is given by (e, C,D)◦(d,A,B) = (e◦d, e(A)∪C, e(B)∪D). That {e(A)∪C, e(B)∪D} form a682

partition of the complement image of e◦d follows from injectivity of e, properties of the image683

and the given partitions. The identity is given by (id, ∅, ∅), and the unit and associativity684

axioms follow from colimit preservation of the image. The monoidal structure in inherited685

from ℓSLO: on objects we use ⋆ and on morphisms we take (d1, A1, B1) ⊕ (d2, A2, B2) =686

(d1 ⋆ d2, A1 ⋆ A2, B1 ⋆ B2), where we write A1 ⋆ A2 for the application of ⋆ to the inclusions687

Ak ⊆ V . Finally, the associator and unitor isomorphisms have empty complement image688

that can be trivially partitioned. ◀689

▶ Definition 43. Let D be a small category and let F : D → PSh(□) be a small diagram of690

precubical sets. For each object U in □ we define the relation ∼ on
∐

d∈D F (d)[U] as the691

transitive closure of692 {
(x, y)

∣∣∣∣ d, e ∈ D, x ∈ F (d)[U], y ∈ F (e)[U]
∃c ∈ D, f : d→ c, g : e→ c s.t. (F (f)[U]) (x) = (F (g)[U]) (y)

}
693

Note that if D is a filtered category the above is already transitive.694

▶ Lemma 44. Let D be a small category and let F : D → PSh(□) be a small diagram of695

precubical sets. Then for each object U in □ we have696 (
colim
d∈D

F (D)
)

[U] ∼= colim
d∈D

(F (d)[U]) ∼=

(∐
d∈D

(F (d)[U])
)/

∼697

where ∼ is the relation defined in Definition 43.698

Proof. Proposition 8.8 from [2] gives us the first isomorphism and the second isomorphism699

follows from the description of colimits in the category of sets (see, for instance, Example700

5.2.16 of [27]). ◀701

▶ Theorem 45. Let (X,ϕ) be a colimit of the small diagram F : D → PSh(□) of precubical702

sets. Then for all objects U in □, all d, e ∈ D, x ∈ F (d)[U] and y ∈ F (e)[U] we have703

x ∼ y ⇐⇒ ϕ(d)[U](x) = ϕ(e)[U](y)704

Proof. Lemma 44 gives us that for all objects U in □ there exists a bijection q[U] : X[U]→705 (∐
d∈D (F (d)[U])

)
/ ∼. For all d ∈ D and every object U in □ there also exists a unique set706

map ψd,U : F (d)[U] →
(∐

d∈D (F (d)[U])
)
/ ∼. We then have q[U] ◦ ϕ(d)[U] = ψd,U which707

because q[U] is a bijection gives us708

x ∼ y ⇐⇒ ψd,U (x) = ψe,U (y) ⇐⇒ ϕ(d)[U](x) = ϕ(e)[U](y)709

which proves the statement. ◀710

CVIT 2016

23:20 Irrationality of Process Replication for HDA

▶ Lemma 46. Let F : D → HDA be a small diagram of HDA with the colimit (X,ϕ).711

Then for all U ∈ □ and all x ∈ X[U] there exists a d ∈ D and a y ∈ F (d)[U] such that712

ϕd[U](y) = x and713

x ∈ X⊥ ⇐⇒ y ∈ F (d)⊥714

715

x ∈ X⊤ ⇐⇒ y ∈ F (d)⊤
716

If D is discrete then this y ∈ F (d)[U] is unique.717

Proof. The fact that for each x ∈ X[U] there exists a d ∈ D and a y ∈ F (d)[U] with718

ϕd[U](y) = x follows from Theorem 45. Suppose that we have x ∈ X⊥ but y ̸∈ F (d)⊥ for719

all y ∈ F (d)[U] with ϕd[U](y) = x. Then we can define (X ′, ϕ′) as the cocone of F with the720

same underlying precubical set and maps as (X,ϕ) but with x ̸∈ X ′
⊥. Then there exists no721

unique HDA map q : X → X ′ as per the universal property, which is in contradiction with722

X being the colimit. Combined with the above working analogously for the accepting cells723

gives us that there must exist a y ∈ F (d)[U] which reflects the starting and accepting cells of724

ϕd[U](y) = x.725

Since a discrete category D contains no morphisms for all d1, d2 ∈ D, y1 ∈ F (d1) [U],726

y2 ∈ F (d2) [U] with ϕd1 [U] (y1) = ϕd2 [U] (y2) because of Theorem 45 we have y1 ∼ y2 and727

therefore d1 = d2 and y1 = y2. ◀728

▶ Lemma 47. Let (X,ϕ) be a cocone of the small diagram F : D → PSh(□) of precubical729

sets such that for all objects U in □, all d, e ∈ D, x ∈ F (d)[U] and y ∈ F (e)[U] we have730

x ∼ y ⇐⇒ ϕ(d)[U](x) = ϕ(e)[U](y)731

and suppose that for all x ∈ X[U] there exists a d ∈ D and a y ∈ F (d)[U] such that732

ϕd[U](y) = x. Then (X,ϕ) is a colimit.733

Proof. Suppose that (Y, ψ) is a colimit of F : D → PSh(□) and let q : Y → X be the734

unique precubical map with q ◦ ψd = ϕd for all d ∈ D. Because of the first property of X735

and Lemma 46 this map is injective, and because of the second property it is surjective.736

Therefore (X,ϕ) is isomorphic to (Y, ψ) through the cocone map q : Y → X which means737

that (X,ϕ) is a colimit. ◀738

C.3 Proofs for Section 3.3739

Proof of Theorem 17 on Page 8. Let F : D → HDA be a small diagram of HDA. We740

write F ′ : D → PSh(□) for F ◦ F . Since PSh(□) is a cocomplete category there exists a741

colimit (L′, ϕ) of this diagram.742

We can then convert this colimit of precubical sets back to a HDA. Let L be the HDA743

with the underlying precubical set L′. The starting and accepting cells L⊥ and L⊤ we define744

as follows: For every object U in □, every d ∈ D and every x ∈ F (d)[U] we have745

x ∈ F (d)⊥ =⇒ ϕ(d)[U](x) ∈ L⊥746

747

x ∈ F (d)⊤ =⇒ ϕ(d)[U](x) ∈ L⊤
748

The precubical maps ϕ(d) : F (d)→ L then by definition preserve starting and accepting cells749

making them HDA maps. Therefore (L, ϕ) is a cocone of the diagram F : D → HDA.750

In fact, we define the sets of starting and accepting cells of L[U] as the colimits of the sets751

of starting and accepting cells of F (d)[U]. It is clear from the construction that (L,L⊥, L
⊤)752

is the colimit. ◀753

H. Basold, T. Baronner, M. Hablicsek 23:21

▶ Lemma 48. Let F : D → PSh(□) be a filtered diagram with the filtered colimit (X,ϕ).754

Let S be a finite set of pairs (U, x) with U ∈ □ and x ∈ X[U]. Then there exists a d ∈ D and755

a finite set S′ of pairs (U, y) with U ∈ □ and y ∈ F (d)[U] such that the universal map of the756

colimit provides a bijection q : S′ → S that maps (U, y) to (U, ϕd(y)) with the property that757

for all (U, y) ∈ S′ if (V, δA,B ◦ ϕd[U](y)) ∈ S for a certain V ∈ □ then (V, δA,B(y)) ∈ S′.758

Proof. For each U ∈ □ and x ∈ X[U] such that (U, x) ∈ S there exists a dx ∈ D and a759

yx ∈ F (dx) [U] such that ϕdx
[U] (yx) = x. Because D is filtered there exists a d ∈ D and760

morphisms gx : dx → d for each dx ∈ D corresponding to a x ∈ X[U] for a certain U ∈ □.761

Therefore we can assume that each yx resides in the same precubical set F (d). Here we have762

that for all (U, x) ∈ S there exists a yx ∈ F (d)[U] such that ϕd[U] (yx) = x. We can define763

the set map q−1 that sends (U, x) to (U, yx). This then automatically gives us our finite set764

S′ and our bijection q : S′ → S.765

Let (U, y) ∈ S′ and suppose that (V, δA,B ◦ ϕd[U](y)) ∈ S for a certain V ∈ □. Then766

there exists a (V, y′) ∈ S′ such that ϕd[V] (y′) = δA,B ◦ ϕd[U](y) = ϕd[V] ◦ δA,B(y), which767

gives us y′ ∼ δA,B(y). Therefore there exists a e ∈ D and a morphism f : d→ e such that768

F (f)[V] (y′) = F (f)[V] (δA,B(y)).769

Since there are only a finite amount of elements in S′ and only a finite amount of elements770

that can be reached form a certain element by the face maps this means that there exists771

a d ∈ D and a finite set S′ with the bijection q : S′ → S for which we have that for all772

(U, y) ∈ S′ if (V, δA,B ◦ ϕd[U](y)) ∈ S for a certain V ∈ □ then (V, δA,B(y)) ∈ S′. ◀773

▶ Lemma 49. Let X be a finite HDA, let F : D → HDA be a filtered diagram with the774

colimit (Y, ϕ) and let f : X → Y be a HDA map. Then there exists a d ∈ D such that there775

exists a HDA map g : X → F (d) with ϕd ◦ g = f .776

Proof. Let S be the set of pairs (U, f [U](x)) with U ∈ □ and x ∈ X[U]. Then, Lemma 48777

says that there exists a d ∈ D with a set S′ of pairs (U, y), y ∈ F (d)[U] such that if (U, y) ∈ S′
778

and (V, δA,B ◦ ϕd(y)) ∈ S then (V, δA,B(y)) ∈ S′. This means that for each x ∈ X[U] there779

exists a certain yx ∈ F (d)[U] such that f [U](x) = ϕd[U] (yx) and such that for all V ∈ □780

and all face maps δA,B we have f [V] ◦ δA,B(x) = ϕd[V] ◦ δA,B (yx) = ϕd[V]
(
yδA,B(x)

)
. This781

in turn gives us the precubical map g : X → F (d) with ϕd ◦ g = f . By Lemma 46 we can782

also assume that g : X → F (d) is a HDA map, by choosing the yx reflecting the starting and783

accepting cells of ϕd[U] (yx) = x. ◀784

Differently stated, Lemma 49 says that if X is a finite HDA and F : D → HDA is a785

filtered diagram with the colimit (Y, ϕ), then any HDA map f : X → Y factors through786

some F (d).787

▶ Lemma 50. Let X be a finite HDA, let F : D → HDA be a filtered diagram with the788

colimit (Y, ϕ) and let f1, f2 : X → F (d) be HDA maps for a certain d ∈ D. Then we have789

ϕd ◦ f1 = ϕd ◦ f2 if and only if there exists a e ∈ D and a morphism g : d → e such that790

F (g) ◦ f1 = F (g) ◦ f2.791

Proof. Suppose that there exists a e ∈ D and a morphism g : d→ e such that F (g) ◦ f1 =792

F (g) ◦ f2. Then we have ϕe ◦ F (g) ◦ f1 = ϕe ◦ F (g) ◦ f2 which automatically gives us793

ϕd ◦ f1 = ϕd ◦ f2, since for all U ∈ □ and all x ∈ X[U] we have794

ϕd ◦ f1[U](x) = ϕe ◦ F (g) ◦ f1[U](x) = ϕe ◦ F (g) ◦ f2[U](x) = ϕd ◦ f2[U](x)795

For the other direction, suppose that we have ϕd ◦ f1 = ϕd ◦ f2. Then for all U ∈ □ and796

all x ∈ X[U] we have ϕd ◦ f1[U](x) = ϕd ◦ f2[U](x). By Theorem 45 there exist ex ∈ D797

CVIT 2016

23:22 Irrationality of Process Replication for HDA

and morphisms g1, g2 : d → ex such that F (g1) ◦ f1[U](x) = F (g2) ◦ f2[U](x). Because D798

is filtered there exists a e′
x ∈ D and a h : ex → e′

x such that h ◦ g1 = h ◦ g2. For the sake799

of convenience we say that for all U ∈ □ and all x ∈ X[U] there exists a ex ∈ D and a800

gx : d→ ex such that F (gx) ◦ f1[U](x) = F (gx) ◦ f2[U](x).801

Since X is finite this gives us only a finite amount of ex ∈ D. Therefore there exists a802

e ∈ D and morphisms hx : ex → e for each U ∈ □ and each x ∈ X[U]. This gives us the803

morphisms hx ◦ gx : d → e which then because of D being a filtered category gives us a804

morphism h : e → e′ such that h ◦ hx ◦ gx = h ◦ hy ◦ gy for all U, V ∈ □ and all x ∈ X[U],805

y ∈ X[V].806

Therefore for all U ∈ □ and all x ∈ X[U] we have a morphism h ◦ hx ◦ gx : d→ e′. This807

morphism is the same for all U ∈ □ or x ∈ X[U]. Renaming e′ to e and h ◦ hx ◦ gx to g gives808

us the required morphism. ◀809

▶ Lemma 51. All finite precubical sets or HDA are compact810

Proof. Since a precubical set can be seen as a special case of HDA (one with empty starting811

and accepting cells) we will just consider the HDA.812

Let X be a finite HDA and let F : D → HDA be a small filtered diagram with the813

colimit (Y, ϕ). This gives us the small filtered diagram Hom(X,F (−)) : D → Set which has814

the filtered colimit (colimd∈D Hom (X,F (d)) ,Φ) and the cocone (Hom(X,Y),Hom (X,ϕd))815

with the unique cocone map q : colimd∈D Hom (X,F (d))→ Hom(X,Y).816

Suppose that f ∈ Hom(X,Y). Then from Lemma 49 it follows that there exists a d ∈ D817

and a g ∈ Hom (X,F (d)) such that ϕd ◦ g = f and therefore Hom (X,ϕd) (g) = f . Since we818

have g ◦ Φd = Hom (X,ϕd) this means that q is surjective.819

Suppose that f1, f2 ∈ colimd∈D Hom (X,F (d)) such that q (f1) = q (f2). Then by820

definition there exists a d ∈ D and g1, g2 ∈ Hom (X,F (d)) such that Φd (g1) = f1 and821

Φd (g2) = f2 (we can assume that g1 and g2 are in the same set due to D being filtered). Then822

q◦Φd (g1) = q (f1) = q (f2) = q◦Φd (g2) which gives us ϕd◦g1 = ϕd◦g2. Then Lemma 50 gives823

us that there exists an object e ∈ D and a morphism h : d→ e such that F (h)◦g1 = F (h)◦g2.824

This then gives us the morphism Hom (X,F (h)) : Hom (X,F (d)) → Hom (X,F (d)) for825

which we have Hom (X,F (h)) (g1) = Hom (X,F (h)) (g2), which means that we have to have826

Φd (g1) = Φd (g2). Therefore q is injective as well, which means that it is an isomorphisms827

which therefore gives us that X is compact. ◀828

Since every representable precubical set is finite by definition this means that they are829

compact as well.830

▶ Definition 52. Let X be a precubical set or HDA. Then the category of elements el(X) is831

the category where832

an object is a pair (U, x) with U ∈ □ an object and x ∈ X[U].833

A morphism (U, x)→ (V, y) consists of a coface map dA,B : U → V such that δA,B(y) = x.834

The category comes with a forgetful functor p : el(X)→ □ with p ◦ (U, x) = U .835

▶ Lemma 53. Let X be a precubical set and let el(X) be the category of elements. We836

have the Yoneda embeddingよ : □→ PSh(□) that sends each object of □ to its respective837

representable precubical set. Then X is a colimit of the diagramよ ◦ p : el(X)→ PSh(□) of838

finite precubical sets.839

Proof. This is the density theorem applied on precubical sets. ◀840

H. Basold, T. Baronner, M. Hablicsek 23:23

▶ Lemma 54. Let X be a precubical set. Then X can be canonically expressed as the colimit841

of a diagram F : el(X) → PSh(□) of representable precubical sets. Suppose that we have842

y1 ∈ F (d1) [U], y2 ∈ F (d2) [U] with y1 ∼ y2 for certain d1, d2 ∈ el(X) and an object U ∈ □.843

Then there exists a d3 ∈ el(X) and morphisms f1 : d3 → d1 and f2 : d3 → d2 in el(X) such844

that there exists a x ∈ F (d3) [U] with F (f1) [U](x) = y1 and F (f2) [U](x) = y2.845

Proof. From Lemma 53 we get the diagram F : el(X)→ PSh(□) of which (X,ϕ) is a colimit.846

Since y1 ∼ y2 Theorem 45 gives us that ϕd1 [U] (y1) = ϕd2 [U] (y2) = x ∈ X[U]. Then there847

exists an object d3 = (U, x) in el(X). Then there also exists a x′ ∈ F (d3) [U] such that848

ϕd3 [U] (x′) = x.849

Let d1 = (V1, z1) and d2 = (V2, z2). Let the unique element of F (d1) [V1] be z′
1 and let850

the unique element of F (d2) [V2] be z′
2. Then there exist coface maps dA1,B1 : V1 → U and851

dA2,B2 : V2 → U such that δA1,B1 (z′
1) = y1 and δA2,B2 (z′

2) = y2.852

Therefore we have ϕd1 [U] ◦ δA1,B1 (z′
1) = ϕd1 [U] (y1) = x and ϕd2 [U] ◦ δA2,B2 (z′

2) =853

ϕd2 [U] (y2) = x. This then means that δA1,B1 (z1) = x = δA2,B2 (z2). By definition of el(X)854

this means that there exist morphisms f : (U, x) → (V1, z1) and g : (U, x) → (V2, z2) such855

that F (f)[U] (x′) = y1 and F (g)[U] (x′) = y2, which proves the statement. ◀856

Proof of Theorem 19 on Page 8. Let
(
X,X⊥, X

⊤) be a HDA and suppose that X is empty857

(for all objects U of □ we have X[U] = ∅). Then we can express X as the filtered colimit of858

the diagram H : D → HDA where D is a discrete category containing only a single object d859

(and therefore also a filtered category) with F (d) = X.860

Let
(
X,X⊥, X

⊤) be a non-empty HDA. By the density theorem, every precubical set861

can be expressed canonically as the colimit of finite precubical sets, i.e, there exists a862

diagram F : D → PSh(□), so that X ∼= colimd∈D F (d). We convert this diagram into863

a diagram of finite HDA F : D → HDA where x ∈ F (d)⊥ ⇐⇒ ϕd(x) ∈ X⊥ and864

x ∈ F (d)⊤ ⇐⇒ ϕd(x) ∈ X⊤. The colimit of this diagram of HDA is exactly
(
X,X⊥, X

⊤)
865

which is by definition of the colimit of HDA.866

The category D used in the density theorem is the category of elements el(X) of X. Let867

S be a finite full subcategory of el(X) and let GS : S → HDA be the finite diagram of HDA868

where GS(d) = F (d) for every object d of S and GS(f) = F (f) for every morphism f : d→ e869

in S.870

Let E be the (small) category of finite full subcategories of el(X) where the morphisms871

are the canonical inclusion functors. The category E is filtered since it is not empty, has872

no parallel morphisms and for each pair of objects S1 and S2 of E there exists a third873

object S3 (the full subcategory of el(X) with obj (S3) = obj (S1) ∪ obj (S2)) and morphisms874

f1 : S1 → S3, f2 : S2 → S3.875

Let H : E → HDA be the filtered diagram with H(S) = colims∈S GS(s) for all S ∈ E.876

Because GS : S → HDA is a finite diagram of finite HDA its colimit H(S) must be a finite877

HDA as well. For all S1, S2 ∈ E there exists a morphism f : S1 → S2 if and only if S1 is a full878

subcategory of S2. In this case colims∈S2 GS2(s) is a cocone of the diagram GS1 : S → HDA879

which gives us the unique HDA map H(f) : H (S1)→ H (S2). This makes H : D → HDA880

a well-defined filtered diagram of finite HDA.881

Each S ∈ E is a full subcategory of el(X) with GS(d) = F (d) for all d ∈ S and882

GS(f) = F (f) for all morphisms f in E. Therefore X is a cocone of each GS : S → HDA883

which gives us the unique HDA maps φS : H(S)→ X. Due to the properties of cocone maps884

we get that for each pair of objects S1, S2 ∈ E with the morphism f : S1 → S2 we have885

φS2 ◦H(f) = φS1 , which makes (X,φ) a cocone of H : E → HDA.886

CVIT 2016

23:24 Irrationality of Process Replication for HDA

Suppose that we have an object U ∈ □ and an element x ∈ X[U]. Since (X,ϕ) is a colimit887

of F : el(X)→ HDA there by definition exists a y ∈ F ((U, x)) [U] such that ϕx[U](y) = x.888

By definition there is a category Sx in E containing only the object (U, x) which means that889

we have H (Sx) = colimd∈Sx GSx = F ((U, x)). In this case the cocone map φSx is the same890

as the injection map ϕ(U,x), which then gives us φSx
[U](y) = x.891

Suppose that we have S1, S2 ∈ E and x1 ∈ H (S1) [U], x2 ∈ H (S2) [U] for a certain892

object U ∈ □ such that φS1 [U] (x1) = φS2 [U] (x2). Since E is filtered we can simply assume893

that S = S1 = S2.894

Per definition we have the colimit (H (S) , θ) of GS : S → HDA. Then Lemma 46 gives895

us that there exist d1, d2 ∈ S such that there exist y1 ∈ GS (d1) [U] and y2 ∈ GS (d2) [U]896

such that θd1 [U] (y1) = x1 and θd2 [U] (y2) = x2.897

Then because (X,ϕ) is a cocone of GS : S → HDA with the cocone map φS : H (S)→ X898

we get899

ϕd1 (y1) = φS ◦ θd1 [U] (y1) = φS [U] (x1) = φS [U] (x2) = φS ◦ θd2 [U] (y2) = ϕd2 (y2)900

This gives us ϕd1 (y1) = ϕd2 (y2) and therefore because of Theorem 45 we get y1 ∼ y2 in901

F : el(X)→ HDA.902

Then because of Lemma 54 there exists a d3 ∈ el(X) and morphisms f : d3 → d1 and903

g : d3 → d2 in el(X) such that there exists a y3 ∈ F (d3) [U] with F (f)[U] (y3) = y1 and904

F (g)[U] (y3) = y2. We have d3 = (V, z) for some object V ∈ □ and some z ∈ X[V].905

This gives us that there exists a S′ ∈ E with obj (S′) = S ∪ {(V, z)} and a morphism906

h : S → S′. S′ by definition includes d1, d2 and d3 and the morphisms f and g which gives907

us that908

H(h)[U] (x1) = H(h) ◦ θd1 [U] (x1) = θ′
d1

[U] (y1)909

910

= θ′
d2

[U] (y2) = H(h) ◦ θ′
d2

[U] (y2) = H(h)[U] (x2)911

with (H (S′) , θ′) being the colimit of GS′ : S′ → HDA. This gives us that for all x1 ∈912

H (S1) [U] and x2 ∈ H (S2) [U] we have x1 ∼ x2 ⇐⇒ φd1 [U] (x1) = φd2 [U] (x2).913

From Lemma 47 it then follows that (X,ϕ) is a filtered colimit of H : E → HDA914

assuming that the starting and accepting cells are correct. Because of the way we defined915

F : el(X) → HDA this is the case. If x ∈ X[U] and x ∈ X⊥ then F (d) with d = (U, x)916

is defined such that for the element y ∈ F (d)[U] with ϕd[U](y) we have y ∈ F (d)⊥. For917

Sx ∈ E the full subcategory containing only d = (U, x) we then have H (Sx) = F (d) such918

that φSx
[U](y) = x. Analogously the same is true for the accepting cells. ◀919

▶ Lemma 55. Every compact precubical set or HDA is finite.920

Proof. We will again only consider the HDA. LetX be a compact HDA and let F : D → HDA921

be a filtered diagram of finite HDA with the filtered colimit (X,ϕ) as per Theorem 19. Then,922

since X is compact, we have923

colim
d∈D

Hom (X,F (d)) ∼= Hom
(
X, colim

d∈D
F (d)

)
∼= Hom (X,X)924

As a consequence, we get that the identity map idX factors through a map X → F (d). Since925

F (d) is a finite HDA, X has to be finite as well. ◀926

Proof of Theorem 18 on Page 8. This follows from Lemma 51 and Lemma 55. ◀927

H. Basold, T. Baronner, M. Hablicsek 23:25

C.4 Proofs for Section 4.1928

Proof of Lemma 25 on Page 9. This follows directly from the definition of ev. ◀929

Proof of Lemma 26 on Page 9. If P ∈ L(X) then there exists a path α in X with ℓ (α) ∈930

X⊥ and r (α) ∈ X⊤ such that ev (α) = P . Lemma 25 gives us that f (α) is a path in Y931

and because HDA maps preserve starting and accepting cells we have ℓ (f (α)) ∈ X⊥ and932

r (f (α)) ∈ X⊤ and therefore P = ev (α) = ev (f (α)) ∈ L(Y).933

In the case that f : X → Y is an isomorphism there exists an inverse map f−1 : Y → X,934

which gives us L(Y) ⊆ L(X) as well and therefore L(X) = L(Y). ◀935

C.5 Proofs for Section 5936

Diagram for Definition 33:937

P X

Y

f

f ′ h P Y R
f ′

f ′′

e
938

Proof of Theorem 34 on Page 12. We only have to prove that essential uniqueness holds939

for any factorisation of f into f = h ◦ f ′. In fact, it suffices to factorise h into X e−→ R
m−→,940

where e is epi and m is mono. Suppose there is f ′′ with f = h ◦ f ′′. Then we have941

mef ′ = hf ′ = f = hf ′′ = mef ′′ and thus, since m is mono, we get ef ′ = ef ′′. ◀942

Proof of Theorem 35 on Page 12. One direction is clear: if D → HDAc is a filtered943

diagram, then colim(D → HDAc → HDA) is locally compact because filtered colimits in944

lfp categories factor essentially uniquely through colimit inclusions.945

For the other direction, we use that for every x ∈ X[U] we can generate a compact946

sub-precubical set ⟨x⟩ ↪→ X that contains x and all its boundary cells. This inclusion factor947

essentially uniquely into an inclusion of a compact HDA, since X is locally compact. This948

gives us an inclusion of HDA into colimUX for every U and x ∈ X[U]. It is easy to see that949

these inclusion jointly set up an isomorphism. ◀950

Proof of Theorem 42 on Page 14. Suppose there is a HDA X ∈ HDAfb with finite initial951

states, such that L(X) = L(A)(∗) = {(a)}(∗). We partition L(X) into languages Lx for952

x ∈ X⊥. Since X⊥ is finite, each Lx must be infinite. Thus for every (a) ∥ · · · ∥ (a)︸ ︷︷ ︸
n

∈ Lx953

there must be an n-cell of which x is a boundary. But then X has infinitely many branches954

at x, and thus X cannot exist with the proclaimed properties. ◀955

CVIT 2016

	1 Introduction
	2 Concurrent Words via Ipomsets
	2.1 Ipomsets
	2.2 Composition of ipomsets and languages

	3 Higher-Dimensional Automata
	3.1 The Category of HDA
	3.2 Monoidal Structure on HDA
	3.3 Filtered Colimits and Compact HDA

	4 Languages of Higher-Dimensional Automata
	4.1 Paths and languages
	4.2 Composition of HDA and their languages

	5 Process Replication as Rational HDA
	5.1 Locally Compact HDA
	5.2 Finitely Branching HDA

	6 Conclusion
	A Notation
	B Convolution Product on HDA
	B.1 Day Convolution Precubical Sets is Coproduct

	C Proofs
	C.1 Proofs for sec:conc-words
	C.2 Proofs for sec:hda-cat
	C.3 Proofs for sec:compact-hda
	C.4 Proofs for sec:paths
	C.5 Proofs for sec:replication

