
Observational Equivalence for
Behavioural Differential Equations

Henning Basold1,2, Helle H. Hansen1,2

1 Radboud University Nijmegen
2 CWI Amsterdam

“We cannot create observers by saying ’observe’, but by giving them the
power and the means for this observation and these means are procured
through education of the senses.”

— Maria Montessori

Recently, Abel and others [2] have proposed a type system, we denote it by F cop
µ

here, in which coinductive types are programmed by means of observations. In a
follow-up paper, Abel and Pientka [1] extended F cop

µ with, amongst other things,
dependent types to F cop

ω , and showed how to check termination and productivity
of programs in a modular way. Both systems allow mutually recursive terms,
which we interpret as Behavioural Differential Equations (BDE) [6]. A natural
question is whether two such BDEs give rise to the same behaviour. This question
is related to differences between intensional and extensional Type Theory [3].

For example, we can define types representing natural numbers and streams
by Nat := µX.(1 + X) and StrA := νX.(A ×X), respectively. On these types,
we can define the stream over Nat that is constantly 1 in several ways, two of
which are shown below.

ones : Str Nat ones1, ones2 : Str Nat

hd ones = 1 hd ones1 = 1

tl ones = ones tl ones1 = ones2

hd ones2 = 1

tl ones2 = ones1

These definitions are syntactically different, but if we take an experimental per-
spective, then they should coincide, since we cannot distinguish them by making
observations. Here, an observation evaluates a term and makes further observa-
tions on the result. For example, for streams we define the set of observations to
be Obs(StrA) = {λs.O(hd(tln s)) | n ∈ N, O ∈ Obs(A)}. We say that two terms
t1, t2 : A are observationally equivalent, written t1 ≡obs t2, if O t1 ≡ O t2 for all
observations O ∈ Obs(A). Here, ≡ is the equivalence induced by the reduction
relation given in [2]. In the example we have ones ≡obs ones1 ≡obs ones2.

This notion of observational equivalence turns out to have some good prop-
erties. It subsumes extensionality in the form of η-equivalence. We can also use
it as an equivalence relation to form a category that has closed types as objects
and equivalence classes of terms with type A→ B as arrows. If we additionally



restrict to observationally normalising terms, i.e. terms normalising under every
observation, we find that this category has products and coproducts. Moreover,
we can interpret types with free variables in positive position as functors on this
category. For types in which variables occur only in strictly positive position,
the induced functors have initial algebras and final coalgebras.

The observations on a type A induce a natural topology on the set of terms
T (A) inhabiting A. Under this topology, terms A→ B are continuous functions
T (A) → T (B) by application. Moreover, this topology coincides with known
ones. For example, the set T (Str Nat) carries the usual product topology, which
comes from the approximation metric on streams. Note, that we consider conti-
nuity as the fundamental notion of computability in this setting, in the spirit of
the Brouwerian school of intuitionism [5,4].

Clearly, the notion of observational equivalence is rather semantic in nature.
So we would like to have means of formulating and proving, in a verifiable way,
that two terms t1, t2 are observationally equivalent. To this end, we introduce an
equivalence relation t1 ∼ t2 between terms, which is supposed to represent ob-
servational equivalence (the symbol looks intentionally like bisimilarity), and a
proof system for ∼. This is analogous to the development by Altenkirch et al. [3],
where an equality is introduced as dependent type together with rules for con-
structing elements of that type. We expect our proof system to be sound and
complete with respect to observational equivalence.

A pleasant fact about the proof system is that proofs are written in the same
BDE syntax as the programs are. In fact, the programs can be seen as the non-
dependent fragment of F cop

ω , and ∼ becomes a dependent type. The techniques
from [1] can now be applied to the proofs, as well. Thus we have that proof
checking for ∼ is decidable. For the problem of finding proofs, we would like to
investigate notions like “bisimulation up-to” techniques.

We hope, that this work can contribute to the development of Observational
Type Theory [3], to solve problems related to extensionality in Type Theory.

References

1. A. Abel and B. Pientka. Wellfounded recursion with copatterns: a unified approach
to termination and productivity. In ICFP, pages 185–196, 2013.

2. A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: Programming Infi-
nite Structures by Observations. In Proc. of POPL ’13, page 27–38. ACM, 2013.

3. T. Altenkirch, C. McBride, and W. Swierstra. Observational Equality, Now! In
Proc. of PLPV ’07, page 57–68. ACM, 2007.

4. M. Escardó. Synthetic Topology: of Data Types and Classical Spaces. ENTCS,
87:21–156, Nov. 2004.

5. N. Ghani, P. Hancock, and D. Pattinson. Continuous Functions on Final Coalgebras.
ENTCS, 249:3–18, 2009.

6. J. J. M. M. Rutten. Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. TCS, 308(1-3):1–53, 2003.


