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Abstract6

Causality appears in various contexts as a property where present behaviour can only depend on7

past events, but not on future events. In this paper, we compare three different notions of causality8

that capture the idea of causality in the form of restrictions on morphisms between coinductively9

defined structures, such as final coalgebras and chains, in fairly general categories. We then focus10

on one presentation and show that it gives rise to a traced symmetric monoidal category of causal11

morphisms. This shows that causal morphisms are closed under sequential and parallel composition12

and, crucially, under recursion.13
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1 Introduction18

Causality appears in various fields of science as the property that the output of a system at19

given time only depends on past and present inputs. This is particularly well-understood20

for computations on streams and various approaches to define causal maps on streams have21

been proposed [7]. More generally, distributive laws have been identified to give rise, and in22

the category of sets also coincide with, causal maps [14]. Such distributive laws provide a23

very neat formalism for constructing simultaneously several causal maps but are notoriously24

difficult to use in compositional specifications [5]. Our aim here is to provide a compositional25

framework for causal maps, in which such maps can be constructed by sequential composition,26

parallel composition and recursion. This framework is built around the idea of graphical27

calculi that arise from traced monoidal categories that allow us to construct and reason28

about morphisms with string diagrams.29

The first question that arises is what causal maps are in general. A robust definition30

can be given by considering maps on final coalgebras. Suppose that F is a functor on some31

category C and that it has a final coalgebra with carrier νF , which arises as the limit of32

a sequence of approximations that we denote by ΦF . The final coalgebra νF comes with33

projections pi : νF → (ΦF )i that allow us to inspect an element in νF up to stage i of the34

approximation. Intuitively, a map f : νF → νF is causal if the ith approximation of its35

output only depends on the ith approximation of the input. This notion has been formalised36

by Rot and Pous [14] and we recap the formal definition in Section 3. For the purpose of37

this introduction, it suffices to say that one can show that causal maps can equivalently be38

represented by chain maps ΦF → ΦF , which are families of maps for every approximation39

stage that are consistent across approximation stages. Formally, one considers ΦF as a40

diagram in C and a chain map is then a natural transformation.41

Thus, there are two equivalent ways of approaching causality. Why would we choose one42

over the other? Causal maps on final coalgebras have the advantage that they are easy to43

understand and calculate. However, to attain our goal of compositional reasoning for causal44

maps, it is better to let go of these for a moment and work with chain maps instead. This45

© Henning Basold and Tanjona Ralaivaosaona;
licensed under Creative Commons License CC-BY 4.0

10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023).
Editors: Paolo Baldan and Valeria de Paiva; Article No. 18; pp. 18:1–18:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.basold@liacs.leidenuniv.nl
https://liacs.leidenuniv.nl/~basoldh/
https://orcid.org/0000-0001-7610-8331
mailto:t.f.r.ralaivaosaona@liacs.leidenuniv.nl
https://doi.org/10.4230/LIPIcs.CALCO.2023.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Composition and Recursion for Causal Structures

gives us access to powerful tools for recursion that is akin to that of domain theory [4, 3].46

Using these tools and some ideas from monoidal categories, we will be able to draw diagrams47

such as those in Figure 1.48

f τ2τ1

σ

g τ3

σ σ

Figure 1 Circuit with feedback loops and parameters

The interpretation of Figure 1 is that f and g are two causal maps that connected in49

various ways, including recursive feedback loops. Each of the maps has a small feedback loop50

and then they are tied together in one big loop. On the loops are small boxes that can be51

seen as registers that store information in between computation steps. It should be noted52

that this is an analogy that works well for streams but may fail for other cases. However, we53

like to place these boxes in the loop because we will show that the feedback is only defined if54

an initial condition is provided, which can be interpreted as initial values in the registers.55

Next, there are blue edges with labels τk. These edges are parameters of the maps that we56

cannot do recursion with but have more flexible types. This can be useful if we consider57

causal maps that have additional inputs and outputs that may not even stem from final58

coalgebras.59

The approach to compositional reasoning for causal maps we propose based on the above60

ideas is that one starts with a set of known causal maps, obtained either directly as chain61

maps or the construction we provide in the paper. Then one can build arbitrarily complex62

compositions and loops around these maps using the formalism of traced monoidal and63

tensored categories. Once construction and reasoning are done, causal maps can be easily64

obtained from the chain maps by taking limits. All of this works fairly generally, as long as65

the assumptions in Section 2.2 are fulfilled and that suitable initial conditions for recursion66

are provided.67

1.1 Contributions and Outline68

We contribute in Section 4 a framework for working compositionally with chain maps. This69

framework consists of a construction of string diagrams that differentiate between interfaces70

for recursion and for parameters. These come about as certain symmetric monoidal, enriched,71

and tensored categories. For such categories, we show that a trace operator can be obtained72

relative to the recursion interface of morphisms. To enable the use of this framework, we73

prove in Section 3 the correspondence between chain maps and causal maps, from which we74

obtain a very flexible method of composition and recursion for causal maps. We also show in75

Section 3.1 a third way to define causal maps in terms of a metric that is induced on νF76

by the diagram ΦF . This metric view allows us to understand causality better in certain77

examples, like streams and partial computations. In Section 5, we discuss applications to78

probabilistic computations and we pay particular attention to linear maps, which turn out79

to be automatically causal. Our framework provides then an alternative view on the various80

calculi for linear circuits. We end with some concluding remarks in Section 6.81
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Before we begin with the actual work, we recall in the following Section 2 some background82

on (enriched) monoidal categories and guarded recursion, and we prove some small results to83

get the theory of the ground.84

2 Preliminaries85

We follow the convention to use boldface letters C for categories, capital letters such as X for86

objects, lower case letters for morphisms, capital letters such as F for functors, small Greek87

letters like µ for natural transformations, and α, β for ordinals. We denote by ω the ordinal88

of the natural numbers. Finally, σ, τ, γ will be for αop-indexed diagrams in some category.89

Recall [11] that a symmetric monoidal category (SMC) is a category C with tensor product90

functor ⊗ : C×C→ C and a tensor unit I ∈ C with the associativity, unit and symmetry91

isomorphisms. An SMC is closed if for every object X ∈ C, the functor Id⊗X : C→ C has a92

right-adjoint. In particular, a Cartesian closed category (CCC) is a closed SMC with products93

acting as tensor and exponentials as their right adjoint: −×X ⊣ −X . Let V be a SMC. A94

V-category C is a V-enriched category, which means that its morphisms C(X, Y ) are objects95

in V, and composition and identity are morphisms cX,Y,Z : C(Y, Z)⊗C(X, Y )→ C(X, Z)96

and uX : I → C(X, X) in V subject to the corresponding associativity and unit axioms [10, 6].97

For morphisms f : X → Y in a Cartesian closed category C, we denote by ⌈f ⌉ : 1→ Y X the98

“code” of f given by the Cartesian closure. The CCC C is a C-category (self-enriched) by99

taking ⌈ id ⌉ : 1→ XX as unit and the composition compX,Y,Z : ZY × Y X → ZX is given by100

the exponential adjunction. A functor F : C→ C is called strong if there is a natural family101

of morphisms FX,Y : Y X → FY F X , such that FX,Y ◦ ⌈f ⌉ = ⌈Ff ⌉ for all f : X → Y . This102

makes F a C-functor for the self-enrichment of C.103

Let C be a category and F : C→ C a functor. An F -coalgebra (or just coalgebra) is a104

morphism c : X → FX in C. If we need to be explicit about the carrier X, we also write105

(X, c). A coalgebra homomorphism from (X, c) to (Y, d) is a morphism f : X → Y in C,106

satisfying Ff ◦c = d◦f . A coalgebra (Y, d) is final if it is final in the category of F -coalgebras107

CoAlg(F ), i.e., if for every coalgebra (X, c) there exists a unique coalgebra homomorphism108

from (X, c) to (Y, d).109

Given a category C, the category of descending α-chains in C, here denoted by ←−C, is110

the functor category [αop, C]. Objects of ←−C are functors σ : αop → C, which assign each111

i < α an object σi of C and each pair i ≤ j a morphism σ(i ≤ j) : σj → σi in C. A112

morphism f : σ → τ in ←−C is a natural transformation, which means that it is an α-indexed113

family of morphisms such that fi ◦ σ(i ≤ j) = τ(i ≤ j) ◦ fj holds. Such f will often be114

called a chain map for simplicity. We also record here that the chain category construction115

gives rise to a 2-functor
←−−
(−) : Cat → Cat on the category of categories. In particular, a116

functor F : C→ D gives rise to a functor ←−F : ←−C→←−D by post-composition with diagrams117

(point-wise application) and similarly for natural transformations. Finally, let us denote by118

K : C→←−C the constant functor which assigns an object X of C to the constant chain given119

by KXi = X and KX(i ≤ j) = idX . If C has αop-limits, then we assume them to be given120

as an adjunction ⟨K ⊣ L, η, ϵ⟩ : C→←−C , where L : ←−C→ C assigns to a chain its limit.121

2.1 Domain Theory of Chains122

It is well known [1, 8] that if F : C→ C has a final coalgebra, then there is a limit ordinal α123

for which F is αop-continuous (preserves limits of αop-diagrams) and the final coalgebra is124

given by the limit of the so-called final chain. The main tool of this paper is this final chain125

CALCO 2023



18:4 Composition and Recursion for Causal Structures

and we shall therefore recap recursion theory for such chains, see [13, 4, 3].126

The category ←−C of αop-chains has properties that are akin to that of domains used in127

recursion theory, with the main difference that fixed point theorems require guardedness via128

the so-called later modality. We assume in what follows that C is Cartesian closed, which129

implies that ←−C is also a CCC, and that C has sufficiently many limits, cf. Section 2.2.130

The later modality is a functor ▶ : ←−C→←−C defined on objects by (▶σ)i = limj<i σj and131

it comes with a natural transformation next : Id→ ▶. Since products preserve limits, there132

are natural isomorphisms δ▶σ,τ : ▶σ × ▶ τ → ▶(σ × τ) and ε▶ : 1 → ▶1. If ω is used as133

indexing ordinal, one can easily show that (▶σ)0 ∼= 1 and (▶σ)n+1 ∼= σn via a chain map.134

We are interested in the category ←−C here because it allows us to do so-called guarded135

recursion, which comes in the form of fixed point solution theorems for morphism and for136

functors analogue to those occurring in domain theory. However, what differentiates guarded137

recursion from domain theory is that we only find fixed points of contractive morphisms.138

A solution or fixed point of a morphism h : τ × γ → γ in ←−C is a morphism s : τ → γ with139

s = h ◦ ⟨idτ , s⟩. We call a morphism h : τ × γ → γ contractive if there is g : τ ×▶ γ → γ with140

h = g ◦ (idτ ×nextγ). The main point is now that any contractive morphism h has a solution141

in ←−C.142

The isomorphisms δ▶ and ε▶ make ▶ a (strong) monoidal functor and thus allow us143

to change the enriching base and obtain a ←−C-category ←−C▶ with the same objects as ←−C144

but ←−C▶(σ, τ) = ▶(τσ) as morphism object. The monoidal natural transformation next145

induces a ←−C-functor Next : ←−C→←−C▶ by putting Nσ,τ = nextτσ : τσ → ▶(τσ). A ←−C-functor146

F : ←−C→←−C is called locally contractive if there is a←−C-functor G : ←−C▶ →
←−C with G◦Next = F .147

Explicitly, there is a family of morphisms Gσ,τ : ▶(στ )→ FσF τ with Fσ,τ = Gσ,τ ◦ nextστ ,148

Gσ,σ ◦▶ ⌈ id ⌉ ◦ ε▶ = ⌈ id ⌉ and comp ◦ (Cσ,τ × Cγ,σ) = Cγ,τ ◦▶ comp ◦ δ▶.149

Throughout this paper, we will use that ▶ is locally contractive, and that if F and G are150 ←−C-functors and at least one of them is locally contractive, then F ◦G is locally contractive.151

Moreover, we will need the following result.152

▶ Lemma 1. Given a functor F : C → C, the functor ←−F : ←−C → ←−C is a ←−C-functor if and153

only if F is a C-functor.154

What makes locally contractive functor interesting, is that they admit unique fixed points:155

Given a locally contractive functor F : ←−C→←−C, there is a unique chain νF with isomorphisms156

obs : νF → F (νF ) and fold = obs−1 : F (νF ) → νF . In this paper, we pick coinduction as157

our main principle and consider (νF, obs) as final object in CoAlg(F ).158

▶ Lemma 2. There is a functor Φ: Endo(C)→←−C given on objects by ΦF = ν
(
▶
←−
F

)
, which159

exists because ▶ ◦
←−
F is locally contractive. We call ΦF the final chain of F .160

Proof. Given a natural transformation α : F → G, we define Φα coinductively as in the161

following diagram.162

ΦF ΦG

▶
←−
F (ΦF )

▶
←−
G(ΦF ) ▶

←−
G(ΦG)

obs

obs

▶ αΦF

Φα

▶
←−
G(Φα)

163

Preservation of identities and composition follow by standard arguments from finality. ◀164
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If F preserves αop-limits, that is, if L
←−
F ∼= FL, then the limit adjunction K ⊣ L lifts to165

an adjunction K ⊣ L with K : CoAlg(F )→ CoAlg
(
▶
←−
F

)
, see [3]. In particular, L(ΦF, obs)166

is a final F -coalgebra with carrier L(ΦF ).167

2.2 Assumptions168

Given the above, we assume the following for the remainder of the paper: C is a Cartesian169

closed category; α is a limit ordinal; C has αop-limits and ∂(α ↓ i)op-limits, where ∂(α ↓ i)170

is the category that contains all j < i; F is a strong functor on C that preserves αop-limits.171

3 Causality172

In this section, we extend the definition of ω-causal operators [14, Def. 8.1] to arbitrary173

categories but we do not define causal algebra. Although, our definition can be easily174

extended to causal algebras. For this purpose, we assume that F preserves αop-limits and175

thus LΦF can be taken as the carrier νF of a final F -coalgebra. We denote by (νF, (pi)i<α),176

the universal cone defining a limit for ΦF and we define causal morphisms on νF as follows.177

▶ Definition 3. A morphism f : νF → νF is causal if for every object X of C, morphisms178

e1, e2 : X → νF and i < α: if pi ◦ e1 = pi ◦ e2, then pi ◦f ◦ e1 = pi ◦f ◦ e2. Diagrammatically:179

νF

X (ΦF )i

νF

pie1

e2 pi

=⇒

νF νF

X (ΦF )i

νF νF

f

pie1

e2
f

pi

180

We denote the set of causal morphisms on νF by Caus(νF, νF ) ⊆ C(νF, νF ).181

In the following theorem we compare two characterisations of causal morphisms on νF .182

▶ Theorem 4. There is a map λ : ←−C(ΦF, ΦF )→ Caus(νF, νF ) with λ(g) = Lg. If there is183

a section s : ΦF → KLΦF of ϵΦF in ←−C, i.e. ϵΦF ◦ s = idΦF , then λ is an isomorphism.184

Proof. We define λ :←−C(ΦF, ΦF )→ Caus(νF, νF ) such that for each g : ΦF → ΦF , λ(g) =185

Lg. To show that λ(g) is causal we need to prove, by Definition 3, that if diagram (1)186

below commutes, then the outer diagram must also commute, for any ρ ∈
←−C and morphisms187

e1, e2 : ρ→ νF . In the diagram, we use LΦF for νF .188

LΦF LΦF

ρ (1) (ΦF )i (ΦF )i

LΦF LΦF

pi (2)

Lg

pi

e1

e2

gi

pi (2)

Lg

pi

189

To prove that the outer diagram commutes, it is enough to prove that diagram (2) commutes.190

Because of naturality of the counit ϵ of the adjunction ⟨K ⊣ L, η, ϵ⟩, the diagram below191

CALCO 2023



18:6 Composition and Recursion for Causal Structures

commutes.192

KLΦF KLΦF

ΦF ΦF

KLg

ϵΦF ϵΦF

g

193

Hence diagram (2) commutes, as being the ith component of the above commuting diagram.194

Therefore, λ(g) is causal.195

Given the section s : ΦF → KLΦF , we define an inverse χ : Caus(νF, νF )→←−C(ΦF, ΦF )196

of λ on causal maps f : νF → νF by letting χ(f) = ΦF
s−→ KLΦF

Kf−−→ KLΦF
ϵΦF−−→ ΦF .197

χ(g) is a chain map in ←−C because it is a composition of chain maps in ←−C. We have,198

(χ ◦ λ)(g) = g, since the following diagram commutes by naturality of ϵ and s being a section.199

ΦF KLΦF KLΦF

ΦF ΦF

s

idΦF

KLg

ϵΦF ϵΦF

g

200

We also have (λ ◦ χ)(f) = f : The following diagram commutes because of causality of f ,201

naturality of η, and the triangular axiom of adjunction.202

LKLΦF LKLΦF

LΦF LΦF LΦF

LKLΦF LKLΦF

LKf

LϵΦF

f

ηLΦF

Ls

ηLΦF

idLΦF

LKf
LϵΦF

203

Thus λ is an isomorphism with inverse χ. ◀204

Importantly, this characterisation allows us to exploit all the domain-theoretic tools that205

are available in ←−C to compose and reason about causal morphisms.206

Let us pause for a moment to take a look at some examples in the category Set. First207

of all, we note that we generally get the required section in Theorem 4 because the limit208

projections split if the involved chains are non-empty. Thus, chain and causal maps are209

equivalent in Set. Let us explore more concretely the familiar examples of streams and210

partial computations.211

▶ Example 5. Let S : Set→ Set be the functor defined by S(X) = R×X, for some set R.212

The set Rω consists of streams over R, defined by Rω = [N, R]. If we use ω as ordinal for213

indexing, then the final chain ΦS is isomorphic to the following chain.214

1 R R2 R3 · · ·! π1 π2
215

That is, (ΦS)0 ∼= 1 and for every i ∈ N, (ΦS)i
∼= Ri via a chain map. Indeed, LΦS ∼= Rω with216

the projections (pi)i∈N, such that pi : Rω → Ri giving for every s ∈ Rω its first i elements. It217

is well known [7] that a function f : Rω → Rω is causal if and only if for all k ∈ N, s, t ∈ Rω,218

if s(i) = t(i) for all i ≤ k, then f(s)(k) = f(t)(k). Which implicitly includes every i ≤ k,219

that is f(s)(i) = f(t)(i), and that is exactly Definition 3. From Theorem 4, we now obtain220

that we can equivalently see f as a chain map χ(f) : ΦS → ΦS, where for u ∈ Rn we have221

χ(f)n+1(u) = f(u : s) for any stream s ∈ Rω. Note that this requires that R is inhabited.222
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▶ Example 6. For the functor N : Set→ Set given by N(X) = X + 1, where 1 = {∗}, one223

has νN ∼= N ∪ {∞}. and we use ω as indexing ordinal. The final chain ΦN is isomorphic to224

the following chain, in which [n] = {k ∈ N | 0 ≤ k < n}.225

[0] [1] [2] [3] · · ·! q1 q2
226

The projections qi are the identity on numbers below i and truncate all higher numbers.227

Pictorially this looks as follows.228

[0] [1] [2] · · ·

0 0 0 · · ·

1 1 · · ·

2 · · ·

q0 q1 q2

229

One can show [14, Ex. 8.4] that a map f : νN → νN is causal if for all n, m and i ≤ min(n, m),230

then f(n) = f(m) or i ≤ min(f(n), f(m)).231

One may wonder where the last condition in Example 6 comes from. Let us, therefore,232

digress for a moment and explore yet another characterisation of causal morphisms.233

3.1 Causality and Metric Maps234

For the purpose of comparing causal maps with metric maps, we assume additionally that C235

is locally small and that it has a generator G, which is an object such that the hom-functor236

C(G,−) : C→ Set is faithful. We will denote this functor by E = C(G,−) and its action on237

a morphism f : X → Y by f∗ : EX → EY . One can think of x ∈ EX as element of X and238

f∗(x) ∈ EX as its image under f . Moreover, we need that the functor F is ωop-continuous.239

These assumptions allow us to define a metric on final coalgebras and then prove that metric240

maps correspond to causal maps.241

Let d : E(νF )× E(νF )→ [0, 1] be the metric defined for e1, e2 ∈ E(νF ) as follows.242

d(e1, e2) = sup
{

2−i
∣∣ pi ◦ e1 ̸= pi ◦ e2, i ∈ N

}
= inf

{
2−i

∣∣ pi ◦ e1 = pi ◦ e2, i ∈ N
}

243

One can easily observe from Definition 3 that two outputs of causal morphisms f∗ should244

not be more distant than their corresponding inputs. That is, causal functions are metric245

maps, in the following sense.246

▶ Definition 7. Let (X, dX), (Y, dY ) be two metric spaces. A function f : X → Y is a metric247

map when for any elements x, y ∈ X, the following condition is fulfilled.248

dY (f(x), f(y)) ≤ dX(x, y)249

Metric spaces and metric maps form a category Met .250

Now we can show the correspondence between causal morphisms and metric maps.251

▶ Theorem 8. The following are equivalent:252

1. f ∈ Caus(νF, νF )253

2. f ∈Met((νF, d), (νF, d))254

CALCO 2023



18:8 Composition and Recursion for Causal Structures

Proof. (1→ 2) By the universal property of sup, we need to prove 2−l ≤ d(x, y) for all l255

with pl ◦ f∗(x) ̸= pl ◦ f∗(y). Given such an l, we get by causality of f that pl ◦ x ̸= pl ◦ y and256

hence 2−l ≤ d(x, y). As this holds for all l, we get d(f∗(x), f∗(y)) ≤ d(x, y).257

(2→ 1) Conversely, let us assume that f is a metric map. That is258

d(f∗(x), f∗(y) ≤ d(x, y), which implies that l ≥ k. Hence, we have for all i < k the following.259

pi ◦ x = pi ◦ y =⇒ f ◦ pi ◦ x = f ◦ pi ◦ y260

Since f is a metric map, we also have pi ◦ f∗(x) = pi ◦ f∗(y). Thus f is causal. ◀261

Birkedal et al. [4] show that there is an adjunction between certain metric spaces and262
←−−Set, and that there is a one-to-one correspondence between contractive maps in the metric263

sense and contractive maps in ←−−Set, see Section 2.1. One can think of Theorem 8 as a partial264

generalisation of this result, although we are mostly interested in it here to understand265

causality better in some examples.266

▶ Example 9. Recall that we cited in Example 6 a rather odd looking characterisation of267

causal maps on partial computations. We can derive this characterisation from Theorem 8268

as follows. Since if n = m we must have f(n) = f(m), suppose without loss of generality269

n ≠ m. For i ≤ min(n, m), we get d(n, m) = 2−(min(n,m)+1). If f is causal, we either have270

f(n) = f(m) or d(f(n), f(m)) = 2−(min(f(n),f(m))+1) ≤ d(n, m). By inspecting the two sides,271

we get that i ≤ min(n, m) ≤ min(f(n), f(m)), which is what we wanted to prove.272

The results in Theorem 4 and Theorem 8 can be summed up as in the following diagram.273

Caus(νF, νF )

←−C(ΦF, ΦF ) Met((νF, d), (νF, d))

∼= ∼=

∼=

274

4 Composition and Recursion275

In this section, we construct for a fixed chain σ a symmetric monoidal category Pσ together276

with a trace-like operator. This category allows us to construct diagrams of arbitrary causal277

morphisms with feedback loops. The SMC Pσ will have as morphisms something one may278

think of building blocks with two kinds of interfaces: one for things of type σ over which279

we do recursion via traces and one type for parameter of arbitrary type. The diagram in280

Figure 1 displays the kind of circuit that we intend to build. Here, we build a circuit out281

of two causal morphisms f and g, where τk are types of the parameters (blue wires) and282

the three loops going through small boxes indicate recursive feedback that goes through a283

register that can store elements of type σ (black wires). Such diagrams can be built, in the284

usual way, by parallel and sequential composition of morphisms and by looping interfaces of285

type σ back to inputs. What is not allowed are loops of types other than σ.286

Let us first explain the nature of Pσ and then we prove that it is a traced SMC. Recall287

that we can associate to any SMC, in this case, ←−C, a canonical PROP [12] Hσ with objects288

being natural numbers and morphisms given by Hσ(n, m) =←−C(σn, σm). In fact, any PROP289

is of this form [2]. In Hσ, we could build diagrams with only black wires and our result290

Corollary 17 below will have as special case that this category is a traced SMC. However, we291

wish to have the extra flexibility of additional parameters, which we can achieve by creating292

a symmetric monoidal ←−C-category that is tensored over ←−C.293
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▶ Theorem 10. Let (V,⊗, I) be a closed SMC and v ∈ V some object. Denote by Hv the294

V-enriched PROP with natural numbers as objects and morphisms v⊗n → v⊗m where v⊗n is295

the n-fold tensor product of v. There is a V-enriched SMC Pv with a fully faithful monoidal296

V-functor (−) : Hv → Pv that is tensored over V, which means that there is a monoidal297

functor ⊙ : V ×Pv → Pv with natural isomorphisms Pv(u ⊙X, Y ) ∼= V(u, Pv(X, Y )) for298

u ∈ V and X, Y ∈ Pv.299

Proof. We define Pv to have as objects pairs (u, n) with u ∈ V and n ∈ N, and as morphisms300

we take301

Pv((u, n), (w, m)) = V
(
u⊗ v⊗n, w ⊗ v⊗m

)
.302

Since V is closed, this makes Pv immediately a V-category. It is also symmetric monoidal303

with the product (u, n) ⊗Pv (w, m) = (u ⊗ w, n + m) and unit IPv = (I, 0). The functor304

Hv → Pv is given by n = (I, n) and f = I ⊗ f . It is obviously monoidal and faithful,305

and that it is full follows from I being the monoidal unit. Finally, the tensor is defined by306

u⊙ (w, n) = (u⊗ w, n) and we get immediately307

Pv(u⊙ (x, n), (y, m)) = Pv((u⊗ x, n), (y, m))308

= V
(
u⊗ x⊗ v⊗n, y ⊗ v⊗m

)
309

∼= V
(
u⊗, V

(
x⊗ v⊗n, y ⊗ v⊗m

))
310

= V(u⊗, Pv((x, n), (y, m)))311

by V being closed. Thus Pv is also tensored over V. ◀312

We now apply Theorem 10 to our situation of αop-chains to obtain for σ ∈
←−C a←−C-category313

Pσ with pairs (τ, n) of τ ∈
←−C and n ∈ N and314

Pσ((τ, n), (γ, m)) =←−C(τ × σn, γ × σm)315

as hom-objects. We denote the monoidal product of Pσ simply by ⊗ and its unit by I. Since316

morphisms in Pσ are particular morphisms in ←−C, we make no distinction between, e.g.,317

id(τ,n) and idτ×σn to lighten notation a bit.318

Our goal now is to enable recursion in Pσ via a trace operator [9]. Except that our trace319

will be relative to Hσ in the sense that there is a family of maps320

Trk
X,Y : Pσ(X ⊗ k, Y ⊗ k)→ Pσ(X, Y )321

indexed by X, Y ∈ Pσ and k ∈ Hσ that fulfils the usual trace axioms. Since the functor322

Hσ → Pσ is fully faithful, this will expose Hσ as a proper traced SMC.323

Whenever morphisms are defined by recursive equations, one has to provide boundary324

conditions to obtain a well-defined solution to the equations, even if they are implicit. In325

analogy with registers to create well-defined feedback loops as in Figure 1, an initial value326

that we place in the registers will take the role of boundary conditions in our case.327

▶ Definition 11. We call a morphism i : ▶σ → σ in ←−C an initial value. It gives rise to a328

morphism on powers of σ by îk = ▶
(
σk

) δ▶

−−→ (▶σ)k ik

−→ σk. A morphism g : n→ m in Hσ329

is compatible with i if îm ◦▶ g = g ◦ în.330

If σ ∈ [ωop, C], then an initial value i : ▶σ → σ consists of morphisms i0 : 1→ σ0 and331

in+1 : σn → σn+1 that are compatible with the chain σ. In the case of streams, see Example 5,332
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i : ▶(ΦS)→ ΦS picks out an element i1 : 1→ R that all ik : Rk → Rk+1 have to return as333

the first element. Compatibility of g with i means then that g1 ◦ i1 = i1, which is for example334

the case when i1 returns 0 and g is linear, see Section 5.1.335

A good source of initial values for the final chain is pointed functors.336

▶ Proposition 12. If F : C→ C is a pointed functor, i.e., comes with a natural transformation337

η : Id→ F , then there is an initial value ▶ΦF → ΦF .338

Proof. The initial value is defined as the composite ▶ΦF
▶←−η ΦF−−−−−→ ▶

←−
F ΦF

fold−−→ ΦF . ◀339

In what follows, we assume an initial value to be given and construct the trace relative to340

it. Since ←−C is Cartesian closed, we find that the morphism involved in our relative trace has341

a special shape.342

We give the definition of morphisms with k-feedback loops as follows.343

▶ Definition 13. A k-feedback morphism f ∈ Pσ((τ, n)⊗Pσ k, (γ, m)⊗Pσ k) is of the form344

f = ⟨fout, ffb⟩345

such that fout ∈ Pσ((τ, n)⊗Pσ
k, (γ, m)) refers to the output of f and ffb ∈ Pσ((τ, n)⊗Pσ

k, k)346

refers to the k-feedback loops of f , given by ffb = îk ◦ nextσk ◦ ffb, where îk ∈ Pσ(k, k) such347

that (̂ik)i : (σi)k → (σi+1)k.348

The first step to defining a trace operator is to figure out the behaviour of the register349

involved in a feedback loop. To this end, let h : (τ, n) ⊗ k → k be a morphism in Pσ350

and consider the morphism îk ◦ nextσk ◦ h : τ × σn × σk → σk, which is contractive with351

îk ◦ ▶h ◦ δ▶ ◦ (nextτ×σn × id) because next is a monoidal natural transformation, as the352

following diagram shows, where X = τ × σn.353

X ×▶(σk) X × σk σk

▶X ×▶(σk) ▶(X × σk) ▶(σk) σk

h

next

id×next

next×id

δ▶ ▶ h

next

îk

next×next354

We denote by s(h) : (τ, n)→ k a solution for îk ◦nextσk ◦h, that is, the unique morphism355

fulfilling the following equation.356

s(h) = îk ◦ nextσk ◦ h ◦ ⟨id(τ,n), s(h)⟩ (1)357

We collect some properties of s(h) that we need to prove the trace axioms.358

▶ Lemma 14. For any h : (τ, n)⊗ k → k and g : (τ ′, n′)→ (τ, n) morphisms in Pσ, if s(h)359

is a solution for îk ◦ nextσk ◦ h, then s(h) ◦ g is a solution for îk ◦ nextσk ◦ h ◦ (g × idk).360

Proof. s(h) ◦ g is a solution for îk ◦ nextσk ◦ h ◦ (g × idk), because361

s(h) ◦ g = îk ◦ nextσk ◦ h ◦ ⟨id(τ,n), s(h)⟩ ◦ g by def. of s(h)362

= îk ◦ nextσk ◦ h ◦ ⟨id(τ,n) ◦g, s(h) ◦ g⟩363

= îk ◦ nextσk ◦ h ◦ ⟨g ◦ id(τ ′,n′), s(h) ◦ g⟩364

= îk ◦ nextσk ◦ h ◦ (g × idk) ◦ ⟨id(τ ′,n′), s(h) ◦ g⟩ ◀365
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The following lemma will allow us to prove the sliding axiom for tracing, but only for366

chain maps that are compatible with the initial value.367

▶ Lemma 15. Suppose h′ : (τ, n) ⊗ k → k′ and g : k′ → k that is compatible with i. If368

s(h′ ◦ (id(τ,n))⊗ g) is a solution for îk′ ◦ nextσk′ ◦h′ ◦ (id(τ,n)⊗g), then g ◦ s(h′ ◦ (id(τ,n))⊗ g)369

is a solution for îk ◦ nextσk ◦ g ◦ h′.370

Proof. Let sk′ = s(h′ ◦ (id(τ,n))⊗ g), then g ◦ sk′ is a solution for îk ◦ nextσk ◦ g ◦ h′, because371

g ◦ sk′
= g ◦ îk

′
◦ nextσk′ ◦ h′ ◦ ⟨id(τ,n), g ◦ sk′

⟩,372

= îk ◦▶ g ◦ nextσk′ ◦ h′ ◦ ⟨id(τ,n), g ◦ sk′
⟩ g compatible with i373

= îk ◦ nextσk ◦ g ◦ h′ ◦ ⟨id(τ,n), g ◦ sk′
⟩ ◀374

We propose a definition of a trace in Pσ in the following theorem, followed by a proof375

that it satisfies the axioms of a trace [9].376

▶ Theorem 16. For any X, Y, k ∈ Pσ, we define Trk
X,Y : Pσ(X ⊗ k, Y ⊗ k)→ Pσ(X, Y ) by377

Trk
X,Y (f) = fout ◦ ⟨idX , s(ffb)⟩ (2)378

a family of morphisms that satisfy the axioms of a trace, with the exception that dinaturality379

is relative to i-compatible morphisms.380

Proof. It is required for Trk
(τ,n),(γ,m) to be a natural transformation on each variable381

(τ, n), (γ, m) and a dinatural trasformation on k. The proof of the axioms of trace are382

done using uniqueness of fixed points.383

1. Naturality on (τ, n): Trk
−,(γ,m) : Pσ(− ⊗ k, (γ, m) ⊗ k) → Pσ(−, (γ, m)) is a natural384

transformation.385

Let f : (τ, n)⊗ k → (γ, m)⊗ k be k-feedback and g : (τ ′, n′)→ (τ, n), both morphisms in386

Pσ. We need to show that387

Trk
(τ ′,n′),(γ,m)(f ◦ (g ⊗ idk)) = Trk

(τ,n),(γ,m)(f) ◦ g, (3)388

By proving the equality s(ffb ◦ (g ⊗ idk)) = s(ffb) ◦ g.389

2. Naturality on (γ, m): Trk
(τ,n),− : Pσ((τ, n) ⊗ k,− ⊗ k) → Pσ((τ, n),−) is a natural390

transformation.391

Let f : (τ, n)⊗ k → (γ, m)⊗ k and g : (γ, m)→ (γ′, m′), we need to show that392

Trk
(τ,n),(γ′,m′)((g ⊗ idk) ◦ f) = g ◦ Trk

(τ,n),(γ,m)(f) (4)393

just by unfolding the definition in g ◦ Trk
(τ,n),(γ,m)(f) .394

3. Dinaturality on k: Tr−(τ,n),(γ,m) : Pσ((τ, n) ⊗ −, (γ, m) ⊗ −) → Pσ((τ, n), (γ, m)) is a395

dinatural transformation, on the full subcategory Hσ with objects of the form n = (K1, n)396

for all n ∈ N, and if iσk at every k ∈ N satisfies for each g : k → k′, g ◦ îk = îk′ ◦▶ g.397

Let f : (τ, n)⊗ k → (γ, m)⊗ k′ and g : k′ → k, we need to show that398

Trk
(τ,n),(γ,m)((id(γ,m)⊗g) ◦ f) = Trk′

(τ,n),(γ,m)(f ◦ (id(τ,n)⊗g)). (5)399

This is done by showing that s(fk′ ◦ (id(τ,n)⊗g)) = s(g ◦ fk′).400

4. Vanishing 1: Let f : (τ, n)⊗ 0→ (γ, m)⊗ 0 and ιr : −⊗ 1→ −, where ιr is the right401

unitor. Then we need to show, that402

Tr0
(τ,n),(γ,m)(f) = ιr(γ,m) ◦ f ◦ ι−1

r(τ,n). (6)403

Note that f is a 0-feedback morphism, therefore fout = f . Hence the equality.404
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5. Vanishing 2: Let f : (τ, n)⊗ 1⊗ 1→ (γ, m)⊗ 1⊗ 1. Then405

Tr2
(τ,n),(γ,m)(f) = Tr1

(τ,n),(γ,m)(Tr1
(τ,n+1),(γ,m+1)(f)) (7)406

6. Superposing: Let f : (τ, n) ⊗ 1 → (γ, m) ⊗ 1 and g : (τ ′, n′) → (γ′, m′). The following407

holds.408

g ◦ Tr1
(τ,n),(γ,m)(f) = Tr1

(τ ′,n′)⊗(τ,n),(γ′,m′)⊗(γ,m)(g ⊗ f). (8)409

7. Yanking: For the component at (1, 1) of the braiding, i.e. ξ1,1,410

Tr1
(1,1)(ξ1,1) = id1 (9)411

which holds because ξ1,1 = ⟨π1, π2⟩ and id1 is a solution for π2412

◀413

The following is a consequence of Theorem 16.414

▶ Corollary 17. Trk
n,m is a trace operator on Hσ if all g : k → k are i-compatible.415

Proof. This follows from Theorem 16 because the functor Hσ → Pσ is fully faithful. ◀416

Going back to causality, by definition Trk
(τ,n),(γ,m)(f) is a morphism in ←−C. Therefore417

L(Trk
(τ,n),(γ,m)(f)) is causal by Theorem 4. As Theorem 4 establishes a bijective correspond-418

ence, we find that Caus(νF, νF ) is closed under sequential composition, parallel composition419

and under recursion via trace. In the following section, we show some applications of this.420

5 Applications421

Before we come to concrete applications, we mention here that distributive laws, that is,422

natural transformations δ : GF → FG, induce morphisms δ̂ : ←−GΦF → ΦF [3]. In particular,423

distributive laws δ : ΣnF → FΣn for the functor Σn : C→ C given by Σn(X) = Xn allow424

us to define n-ary causal morphisms. If, moreover, F is pointed with η : Id → F and425

δ ◦Σnη = ηΣn, the induced map δ̂ : (ΦF )n → ΦF is compatible with the initial value induced426

by η, see Proposition 12.427

5.1 Linear Stream Functions428

In this section, we look into functions over the set Rω of all streams over a commutative429

ring (R, +, ., 0, 1). The set Rω is a commutative ring, with the pointwise addition +, the430

convolution product ×, together with their respective unit stream, see [15]. Moreover, for431

any n ∈ N, (Rω)n is an Rω-module and module homomorphisms are Rω-linear systems in432

the following sense.433

▶ Definition 18. A system ⟨f1, · · · , fm⟩ : (Rω)n → (Rω)m is Rω-linear if for every434

i ∈ {1, · · · , m}, fi : (Rω)n → Rω is Rω-linear, i.e., for all streams u, v ∈ Rω and (s1, · · · , sn), (t1, · · · , tn) ∈435

(Rω)n
436

f((u× (s1, · · · , sn)) + (v × (t1, · · · , tn))) = (u× f(s1, · · · , sn)) + (v × f(t1, · · · , tn))437

where f(s1, · · · , sn) = (z1×s1)+ · · ·+(zn×sm) for some fixed rational streams1 z1, · · · , zn ∈438

Rω.439

1 A rational stream is a product of polynomial streams and inverse of a polynomial stream, see [15,
Def. 3.32].
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We consider the above linear systems because they are characterization of finite stream440

circuits, possibly with feedback loops under the condition that each loop passes through at441

least one register, see [15].442

▶ Theorem 19. Every linear stream operator f : (Rω)n → Rω is causal.443

Proof. For every (s1, · · · , sn), (t1, · · · , tn) ∈ (Rω)n, z1, · · · , zn ∈ Rω and k ∈ N, we assume444

for all i ≤ k that s1(i) = t1(i), · · · , sn(i) = tn(i). To prove that f is causal, we need to show445

that f(s1, · · · , sn)(k) = f(t1, · · · , tn)(k) .446

We have the following.447

f(s1, · · · , sn)(k) =
n∑

j=1

k∑
i=0

zj(i) · sj(k − i) and448

f(t1, · · · , tn)(k) =
n∑

j=1

k∑
i=0

zj(i) · tj(k − i)449

For all i ∈ {0, · · · , k}, k− i ≤ k. Hence, sj(k− i) = tj(k− i) for all j ∈ {1, · · · , n}. Thus,450

for all k ∈ N, the following.451

f(s1, · · · , sn)(k) = f(t1, · · · , tn)(k) (10)452

◀453

We have seen that Rω ∼= LΦS where ΦS is isomorphic to an ωop-chain as described in454

Example 5. We aim to define stream circuits with feedback loops with initial condition [15]455

as the trace of functions on the final chain ΦS.456

Consider the pointed functor (S, ηS), where S = R× Id, the functor from Example 5 and457

ηS : Id→ S is a natural transformation defined for a fixed r ∈ R such that µX(u) = (r, u),458

for every u ∈ X . Then we get a chain map i : ▶ΦS → ΦS defined by i0 : 1→ R and459

in : Rn → Rn+1 with in(u) = (r, u) for every n ∈ N and u ∈ Rn. Moreover,460

(πn ◦ in)(u) = (r, πn−1(u)) as given in the following.461

1 1 R R2 · · ·

1 R R2 R3 · · ·

! i0 i1 i2

! ! π1

! π1 π2

462

The morphism next : ΦS → ▶ΦS is defined for every n ∈ N by nextn : Rn+1 → Rn such463

that nextn = πn. Hence, for every u ∈ Rn+1, (in ◦ nextn)(u) = (r, πn−1(u)). Note that, for464

r = 0 the latter can be implemented by a register with initial value 0 [15] and the trace of a465

function f : (ΦS)n+1 → (Φ)m+1, given by f = ⟨fout, ffb⟩ such that fout : (ΦS)n+1 → (ΦS)m
466

and ffb : (ΦS)n+1 → ΦS ,is defined by467

Trk
n,m(f) = fout ◦ ⟨idn, s(ffb)⟩468

where s(ffb) is a fixed point for i ◦ next ◦ ffb.469

Since the trace of a chain map is a chain map, it is as well causal by Theorem 4.470
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5.2 Probabilistic Computations471

Let us denote by D : Set→ Set the (functor of the) finite probability distribution monad.472

The elements of D(X) are maps d : X → [0, 1] that have only finitely many elements in473

the support supp(d) = {x ∈ X | d(x) ̸= 0} and such that
∑

x∈supp(d) d(x) = 1. On maps474

f : X → Y , D is defined by D(f)(d)(y) =
∑

f(x)=y d(x). We can now consider probabilistic475

stream systems, also known as labelled Markov chains, which are coalgebras for the composed476

functor DR = D(R× Id).477

sp ∆

Figure 2 Diagram for computing discounted sum dsp

Let us construct a discounted sum operation dsp : ΦDR → ΦDR for p ∈ [0, 1] as the478

diagram displayed in Figure 2. First of all, the convex sum induces a distributive law479

cp : Σ2DR → DR given by cp
X(d1, d2)(r, x, y) = pd1(r, x) + (1 − p)d2(r, y). This gives us a480

causal map ĉp : (ΦDR)2 → ΦDR. Finally, we obtain dsp as Tr(∆◦ ĉp), where ∆ is the diagonal481

map ΦDR → (ΦDR)2.482

Note that ĉp is not compatible with the initial value induced by the unit ηD of the483

distribution monad, which is defined by ηDX(x) = 1. In particular, we obtain484

(sp ◦ Σ2ηD)(x, y) = pηD(x) + (1− p)ηD(y) and this is not a Dirac distribution given by ηD,485

unless x = y.486

5.3 Remark487

A potential example that one could additionally consider is the category of presheaves488

PSh(P) = [P op, Set] on a preordered set P . The category PSh(P) is Cartesian closed and489

for a limit preserving functor F , the carrier of a final coalgebra for F is a presheaf, which is a490

functor νF : P op → Set. Hence a causal morphism f : νF → νF is a natural transformation491

and the corresponding chain map is a morphism between a final chain, which is a diagram in492 ←−−−−−
PSh(P) = [αop, PSh(P)] = [αop, [P op, Set]], for a limit ordinal α. Moreover, PSh(P) has a493

generator. Therefore, one could investigate the meaning of causality using theorem 4 and494

theorem 8.495

6 Summary, Related Work and Future Work496

We have defined causal morphisms on the carrier of a final coalgebra νF for a limit preserving497

endofunctor F on arbitrary cartesian closed categories C. We have seen, based on the498

construction of a final coalgebra via final chains, that there is a one-to-one correspondence499

between causal maps in Caus(νF, νF ) and chain maps in←−C(ΦF, ΦF ), where νF is isomorphic500

to the limit of ΦF . For a locally small category with a generator, we equipped νF with a501

metric and found out that causal morphisms are metric maps and vice versa. Additionally,502

we have constructed on a category of descending chains a (parameterised) traced symmetric503

monoidal category, on which causal morphisms (simply chain maps between final chains) are504

closed under sequential and parallel composition and under recursion via the trace operator.505
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We are well aware of the work of [16] and [14] which both give a definition of causal506

functions via finite approximations, but both work on Set and give the equivalence between507

causal functions on final coalgebras and morphisms on their finite approximations. We can508

easily extend our definition to causal algebras, as in [14], which gives us the inspiration to509

more general notion of causality. [16] introduced recursion in their work, which could be510

achieved in a traced symmetric monoidal category. They also defined linear causal maps, but511

for our case, it is enough to talk about linearity since we show that linear maps are causal.512

For future work, we consider working on other cartesian closed categories such as G−Set513

of sets with group actions from G, particularly nominal set; and also on the CCC of quasi-514

Borel spaces on which one can formalize some probability theory. One could use monoidal515

closed categories instead of cartesian closed and see how everything works out. We would516

also like to extend the notion of causality to more general continuity properties.517
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A Complete Proof of Theorem 16558

1. Naturality on (τ, n): Trk
−,(γ,m) : Pσ(− ⊗ k, (γ, m) ⊗ k) → Pσ(−, (γ, m)) is a natural559

transformation.560

Let f : (τ, n)⊗ k → (γ, m)⊗ k be k-feedback and g : (τ ′, n′)→ (τ, n), both morphisms in561

Pσ. We need to show that562

Trk
(τ ′,n′),(γ,m)(f ◦ (g ⊗ idk)) = Trk

(τ,n),(γ,m)(f) ◦ g. (11)563

We first write down, using the definition, the left-hand side of equality (11). Since f is564

k-feedback, then we have565

(f ◦ (g ⊗ idk))out =fout ◦ (g ⊗ idk) and566

(f ◦ (g ⊗ idk))fb =ffb ◦ (g ⊗ idk).567

Hence, by Equation (2), we have568

Trk
(τ ′,n′),(γ,m)(f ◦ (g ⊗ idk)) = fout ◦ (g ⊗ idk) ◦ ⟨id(τ ′,n′), s(ffb ◦ (g ⊗ idk))⟩, (12)569

where s(ffb ◦ (g ⊗ idk)) : τ ′ × σn′ → σk is a solution for îk ◦ nextσk ◦ ffb ◦ (g ⊗ idk), and570

571

s(ffb ◦ (g ⊗ idk)) = îk ◦ nextσk ◦ ffb ◦ (g ⊗ idk) ◦ ⟨id(τ ′,n′), s(ffb ◦ (g ⊗ idk))⟩.572

The right hand side of (11) gives us573

Trk
(τ,n),(γ,m)(f) ◦ g = fout ◦ ⟨id(τ,n), s(ffb)⟩ ◦ g, (13)574

with s(ffb) : τ × σn → σk being the fixed point of îk ◦ nextσk ◦ ffb and575

s(ffb) = îk ◦ nextσk ◦ f1 ◦ ⟨id(τ,n), s⟩. (14)576

It remains to prove that,577

f1 ◦ ⟨id(τ,n), sk⟩ ◦ g = f1 ◦ (g ⊗ idk) ◦ ⟨idτ ′,n′ , rk⟩. (15)578

By Lemma 14, can replace s(ffb ◦ (g ⊗ idk)) in (12) by s(ffb) ◦ g. Then, we get579

Trk
(τ ′,n′),(γ,m)(f ◦ (g ⊗ idk)) = fout ◦ (g ⊗ idk) ◦ ⟨id(τ ′,n′), s(ffb) ◦ g⟩,580

= fout ◦ ⟨g ◦ id(τ ′,n′), s(ffb) ◦ g⟩,581

= fout ◦ ⟨id(τ,n) ◦g, s(ffb) ◦ g⟩,582

= fout ◦ ⟨id(τ,n), s(ffb)⟩ ◦ g,583

= Trk
(τ,n),(γ,m)(f) ◦ g.584

Hence, equality (11).585

2. Naturality on (γ, m): Trk
(τ,n),− : Pσ((τ, n) ⊗ k,− ⊗ k) → Pσ((τ, n),−) is a natural586

transformation.587

Let f : (τ, n)⊗ k → (γ, m)⊗ k and g : (γ, m)→ (γ′, m′), we need to show that588

Trk
(τ,n),(γ′,m′)((g ⊗ idk) ◦ f) = g ◦ Trk

(τ,n),(γ,m)(f). (16)589

For the k-feedback morphism (g ⊗ idk) ◦ f ,590

((g ⊗ idk) ◦ f)out = g ◦ fout, and591
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((g ⊗ idk) ◦ f)fb = ffb.592

By definition, we then have:593

Trk
(τ,n),(γ′,m′)((g ⊗ idk) ◦ f) = g ◦ fout ◦ ⟨id(τ,n), s(ffb)⟩. (17)594

We also have, on the other hand, by definition of Trk
(τ,n),(γ,m)(f), that595

g ◦ Trk
(τ,n),(γ,m)(f) = g ◦ fout ◦ ⟨id(τ,n), s(ffb)⟩. (18)596

Hence equality (4).597

3. Dinaturality on k: Tr−(τ,n),(γ,m) : Pσ((τ, n) ⊗ −, (γ, m) ⊗ −) → Pσ((τ, n), (γ, m)) is a598

dinatural transformation, on the full subcategory Hσ with objects of the form n = (K1, n)599

for all n ∈ N, and if iσk at every k ∈ N satisfies for each g : k → k′, g ◦ îk = îk′ ◦▶ g.600

601

Let f : (τ, n)⊗ k → (γ, m)⊗ k′ and g : k′ → k, we need to show that602

Trk
(τ,n),(γ,m)((id(γ,m)⊗g) ◦ f) = Trk′

(τ,n),(γ,m)(f ◦ (id(τ,n)⊗g)). (19)603

Note that (id(γ,m)⊗g) ◦ f is k-feedback with604

((id(γ,m)⊗g) ◦ f)out = fout,605

((id(γ,m)⊗g) ◦ f)fb = (g ◦ f)fb,606

and f ◦ (id(τ,n)⊗g) is k′-feedback, with607

(f ◦ (id(τ,n)⊗g))out = fout ◦ (id(τ,n)⊗g), and608

(f ◦ (id(τ,n)⊗g))fb = ffb ◦ (id(τ,n)⊗g);609

such that fout : τ × σn × σk → γ × σm and ffb : τ × σn × σk → σk′
.610

Then, by Theorem 16, we have611

Trk
(τ,n),(γ,m)((id(γ,m)⊗g) ◦ f) = fout ◦ ⟨id(τ,n), s(g ◦ fk′)⟩; (20)612

and613

Trk′

(τ,n),(γ,m)(f ◦ (id(τ,n)⊗g)) = fout ◦ (id(τ,n)⊗g) ◦ ⟨id(τ,n), s(fk′ ◦ (id(τ,n)⊗g))⟩,614

= fout ◦ ⟨id(τ,n), g ◦ s(fk′ ◦ (id(τ,n)⊗g))⟩.615

Let sk′ = s(fk′ ◦ (id(τ,n)⊗g)), a solution for iσk′ ◦ nextσk′ ◦ fk′ ◦ (id(τ,n)⊗g), then by616

Lemma 15, g ◦ sk′ is a solution for îk ◦ nextσk ◦ g ◦ fk′ . Hence, we can substitute s(g ◦ fk′)617

in (20), by g ◦ sk′ , and we get618

Trk
(τ,n),(γ,m)((id(γ,m)⊗g) ◦ f) = fout ◦ ⟨id(τ,n), s(g ◦ fk′)⟩,619

= fout ◦ ⟨id(τ,n), g ◦ sk′
⟩,620

= Trk′

(τ,n),(γ,m)(f ◦ (id(τ,n)⊗g)).621

▶ Remark 20. In the case where we do not have g ◦ iσk = i
σk′ ◦▶ g, dinaturality is not622

satified.623

We have now seen that trace in Theorem 16 is a family of natural morphisms, we are left624

to check if they fulfill the three axioms of trace in [9], for symmetric monoidal categories.625
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4. Vanishing 1: Let f : (τ, n) ⊗ 0 → (γ, m) ⊗ 0 and ιr : − ⊗1 → −, where ιr is the right626

unitor. Then we need to show, that627

Tr0
(τ,n),(γ,m)(f) = ιr(γ,m) ◦ f ◦ ι−1

r(τ,n). (21)628

Note that Tr0
(τ,n),(γ,m) : Pσ((τ, n), (γ, m))→ Pσ((τ, n), (γ, m))629

In this case, f is 0-feedback, therefore fout = f . Hence630

Tr0
(τ,n),(γ,m)(f) = f631

= ιr(γ,m) ◦ f ◦ ι−1
r(τ,n).632

5. Vanishing 2: Let f : (τ, n)⊗ 1⊗ 1→ (γ, m)⊗ 1⊗ 1 We need to show that633

Tr2
(τ,n),(γ,m)(f) = Tr1

(τ,n),(γ,m)(Tr1
(τ,n+1),(γ,m+1)(f)) (22)634

f is a 2-feedback, and we have 2 = 1⊗ 1 = σ1+1 = σ2 ∼= σ × σ. We shall decompose f as635

follows, for us to be able to unfold de definition.636

f = ⟨fout, f2⟩ = ⟨fout, f21, f1⟩ = ⟨fout,2out, f1⟩ such that637

f : τ × σn × σ × σ → γ × σm × σ × σ638

fout : τ × σn × σ × σ → γ × σm
639

fout,2out : τ × σn × σ × σ → γ × σm × σ640

f21 : τ × σn × σ × σ → σ641

f1 : τ × σn × σ × σ → σ642

Let us first unfold the definition of the right hand side of equation (22).643

Tr1
(τ,n+1),(γ,n+1)(f) = f1 ◦ ⟨id(τ,n+1), s1⟩ , (23)644

With s1 : τ × σn+1 → σ being a solution for î1 ◦ nextσ ◦ f1 and645

s1 = î1 ◦ nextσ ◦ f1 ◦ ⟨id(τ,n+1), s1⟩ . Then646

Tr1
(τ,n),(γ,m)(Tr1

(τ,n+1),(γ,m+1)(f)) = (f1 ◦ ⟨id(τ,n+1), s1⟩)1 ◦ ⟨id(τ,n), s2⟩, (24)647

such that s2 : τ × σn → σ is a solution for î1 ◦ nextσ ◦ (fout,2out ◦ ⟨id(τ,n+1), s1⟩)2 and648

s2 = î1 ◦ nextσ ◦ f21 ◦ ⟨id(τ,n+1), s1⟩ ◦ ⟨id(τ,n), s2⟩, where649

(fout,2out ◦ ⟨id(τ,n+1), s1⟩)1 =fout ◦ ⟨id(τ,n+1) s1⟩ and650

(fout,2out ◦ ⟨id(τ,n+1), s1⟩)2 =f21 ◦ ⟨id(τ,n+1), s1⟩ .651

Hence652

Tr1
(τ,n),(γ,m)(Tr1

(τ,n+1),(γ,m+1)(f)) = fout ◦ ⟨id(τ,n+1), s1⟩ ◦ ⟨id(τ,n), s2⟩. (25)653

Now we can proceed to the left-hand side of equation (22). We have f = ⟨fout, ⟨f21, f1⟩⟩,654

and655

Tr2
(τ,n),(γ,m)(f) = fout ◦ ⟨id(τ,n), s⟩, (26)656

where s : τ × σn → σ× σ is a solution for î2 ◦ nextσ2 ◦ ⟨f21, f1⟩ : τ × σn × σ× σ → σ× σ.657

We can show that t = ⟨s2, s1 ◦ ⟨id(τ,n), s2⟩⟩ is a solution for î2 ◦ nextσ2 ◦ ⟨f21, f1⟩, ie658

t = î2 ◦ nextσ2 ◦ ⟨f21, f1⟩ ◦ ⟨id(τ,n), t⟩. (27)659
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We have the following identities660

⟨id(τ,n+1), s1⟩ ◦ ⟨id(τ,n), s2⟩ =⟨id(τ,n), s2, s1 ◦ ⟨id(τ,n), s2⟩⟩661

=⟨id(τ,n), t⟩.662

and663

t = ⟨s2, s1 ◦ ⟨id(τ,n), s2⟩⟩,664

= ⟨s2, î1 ◦ nextσ ◦ f1 ◦ ⟨id(τ,n+1), s1⟩ ◦ ⟨id(τ,n), s2⟩⟩,665

= ⟨s2, î1 ◦ nextσ ◦ f1 ◦ ⟨id(τ,n), t⟩⟩,666

= ⟨̂i1 ◦ nextσ ◦ f21 ◦ ⟨id(τ,n+1), s1⟩ ◦ ⟨id(τ,n), s2⟩, î1 ◦ nextσ ◦ f1 ◦ ⟨id(τ,n), t⟩⟩,667

= ⟨̂i1 ◦ nextσ ◦ f21 ◦ ⟨id(τ,n), t⟩, î1 ◦ nextσ ◦ f1 ◦ ⟨id(τ,n), t⟩⟩,668

= ⟨̂i1 ◦ nextσ ◦ f21, î1 ◦ nextσ ◦ f1⟩ ◦ ⟨id(τ,n), t⟩,669

= î2 ◦ nextσ2 ◦ ⟨f21, f1⟩ ◦ ⟨⟨id(τ,n), t⟩.670

Hence t is a solution î2 ◦ nextσ2 ◦ ⟨f21, f1⟩. Therefore we have the following.671

Tr2
(τ,n),(γ,m)(f) = fout ◦ ⟨id(τ,n), t⟩672

= fout ◦ ⟨id(τ,n), s2, s1 ◦ ⟨id(τ,n), s2⟩⟩673

= Tr1
(τ,n),(γ,m)(Tr1

(τ,n+1),(γ,m+1)(f))674

6. Superposing: Let f : (τ, n)⊗ 1→ (γ, m)⊗ 1 and g : (τ ′, n′)→ (γ′, m′), we need to show675

that676

g ◦ Tr1
(τ,n),(γ,m)(f) = Tr1

(τ ′,n′)⊗(τ,n),(γ′,m′)⊗(γ,m)(g ⊗ f) . (28)677

We have678

Tr1
(τ ′,n′)⊗(τ,n),(γ′,m′)⊗(γ,m)(g ⊗ f) = (g ⊗ f)1 ◦ ⟨id(τ ′,n′)⊗(τ,n), s⟩679

= (g ⊗ f1) ◦ ⟨id(τ ′,n′)⊗(τ,n), s⟩680

where s : τ ′×σn′×τ×σn → σ is a solution for î1◦nextσ◦(g⊗f)2 = î1◦nextσ◦f1◦π(τ,n+1),681

i.e.682

s = î1 ◦ nextσ ◦ f1 ◦ π(τ,n+1) ◦ ⟨id(τ ′,n′)⊗(τ,n), s⟩, (29)683

= î1 ◦ nextσ ◦ f1 ◦ ⟨π(τ,n) ◦ id(τ ′,n′)⊗(τ,n), s⟩. (30)684

If s(f1) : τ × σn → σ is a solution for î1 ◦ nextσ ◦ f1, i.e.685

s(f1) = î1 ◦ nextσ ◦ f1 ◦ ⟨id(τ,n), s(f1)⟩ .686

then s(f1)◦π(τ,n) : τ ′×σn′×τ×σn → σ, is a solution for î1 ◦nextσ ◦f1 ◦π(τ,n+1), because687

of the following688

s(f1) ◦ π(τ,n) = î1 ◦ nextσ ◦ f1 ◦ ⟨id(τ,n), s(f1)⟩ ◦ π(τ,n),689

= î1 ◦ nextσ ◦ f1 ◦ ⟨id(τ,n) ◦π(τ,n), s(f1) ◦ π(τ,n)⟩;690

= î1 ◦ nextσ ◦ f1 ◦ ⟨π(τ,n), s(f1) ◦ π(τ,n)⟩;691

= î1 ◦ nextσ ◦ f1 ◦ ⟨π(τ,n) ◦ id(τ ′,n′)⊗(τ,n), s(f1) ◦ π(τ,n)⟩.692
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The last equality is similar to (30), by susbstituting s(f1) ◦ π(τ,n) for s. Since, we have693

by definition694

Tr1
(τ,n),(γ,m)(f) = f1 ◦ ⟨id(τ,n), s(f1)⟩ . (31)695

696

Tr1
(τ ′,n′)⊗(τ,n),(γ′,m′)⊗(γ,m)(g ⊗ f) = (g ⊗ f1) ◦ ⟨id(τ ′,n′)⊗(τ,n), s(f1) ◦ π(τ,n)⟩697

= (g ⊗ f1) ◦ ⟨id(τ ′,n′)⊗id(τ,n), s(f1) ◦ π(τ,n)⟩698

= (g ⊗ f1) ◦ (id(τ ′,n′) ⊗ ⟨id(τ,n), s(f1)⟩)699

= (id(τ ′,n′) ◦ g)⊗ (f1 ◦ ⟨id(τ,n), s(f1)⟩), by bifunctoriality of ⊗700

= g ⊗ (f1 ◦ ⟨id(τ,n), s(f1)⟩)701

= g ⊗ Tr1
(τ,n),(γ,m)(f)702

Therefore, we have (28), which proves the superposition axiom.703

7. Yanking: We need to show, for the component at (1, 1) of the braiding, i.e. ξ1,1, that704

Tr1
(1,1)(ξ1,1) = id1. (32)705

Note that ξ1,1 = ⟨π1, π2⟩ , Tr1
(1,1)(ξ1,1) = π1 ◦ ⟨id1, s(π2)⟩ , where s(π2) : σ → σ is a706

solution for π2 . id1 is a solution for π2 . Therefore,707

Tr1
(1,1)(ξ1,1) = π1 ◦ ⟨id1, s⟩708

= π1 ◦ ⟨id1, id1⟩709

= id1710

The dinaturality of Tr−(τ,n),(γ,m) is only on Pσ, and that is only fulfilled if for any711

g ∈
←−C(k, k), îk ◦▶ g = g ◦ îk′ .712
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