n-Queens

This page, maintained by Walter Kosters from Universiteit Leiden, contains information related to the n-queens problem, i.e., references.

NEW We (Pieter Bas Donkersteeg and Walter Kosters) produced a thorough update. At this moment we have 309 references.


Old stuff

The text below is just kept for our own convenience. It is really superseded by the new page.

We have a BiBTeX file with references to the n-queens problem; latest updates: June 1995, September 1998, February 1999, December 2000, March/April 2002. Some new references have been added in March/April 2002. And in 2008!

The references are also available in PostScript format (101 kB) or in PDF format (91 kB).

Thanks: Hendrik Jan Hoogeboom, Damien Wyart, Egbert Meissenburg.

To do:

References

The bib-file mentioned above contains the following 81 references, plus 7 new ones :
  1. Bruce Abramson and Mordechai M. Yung. Divide and Conquer under Global Constraints: A Solution to the N-Queens Problem. Journal of Parallel and Distributed Computing, 6:649-662, 1989.

  2. Wilhelm Ahrens. Mathematische Unterhaltungen und Spiele. B.G. Teubner, 1910.

  3. (Author - Anonymous). (Title - Unknown). Berliner Schachgesellschaft, 3:363, 1848.

  4. W.W. Rouse Ball. Mathematical Recreations and Essays, page 113. MacMillan and Co., 1926.

  5. B.T. Bennett and R.B. Potts. Arrays and Brooks. Journal for the Australian Mathematical Society, pages 23-31, 1967.

  6. Bo Bernhardsson. Explicit Solution to the n-Queens Problems for all n. ACM SIGART Bulletin, 2:7, 1991.

  7. J.R. Bitner and E.M. Reingold. Backtrack Programming Techniques. Communications of the ACM, 18:651-656, 1975.

  8. Ivan Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley, 2nd edition, 1990.

  9. A. Bruen and R. Dixon. The n-Queens Problem. Discrete Mathematics, 12:393-395, 1975.

  10. NEW P.J. Campbell, Gauss and the Eight Queens Problem, A Study in Miniature of the Propagation, Historia Mathematica, 4:397-404, 1977.

  11. A.P. Burger, Ernest J. Cockayne and C.M. Mynhardt. Domination and Irredundance in the Queens' Graph. Discrete Mathematics, 163:47-66, 1997.

  12. NEW Grant Cairns, Queens on Non-square Tori, The Electronic Journal of Combinatorics, 8:N6, 2001.

  13. A.K. Chandra. Independent Permutations, as Related to a Problem of Moser and a Theorem of Pólya. Journal of Combinatorial Theory, A16:111-120, 1974.

  14. R.M. Clapp, T.N. Mudge and R.A. Volz. Solutions to the n Queens Problem Using Tasking in Ada. SIGPLAN Notices, 21:99-110, 1986.

  15. Ernest J. Cockayne and Stephen T. Hedetniemi. On the Diagonal Queens Domination Problem. Journal of Combinatorial Theory, A42:137-139, 1986.

  16. K.D. Crawford. Solving the n-Queens Problem Using Genetic Algorithms. In Proceedings ACM/SIGAPP Syposium on Applied Computing, Kansas City, pages 1039-1047, 1992.

  17. Paul Cull and Rajeev Pandy. Isomorphism and the N-Queens Problem. SIGCSE Bulletin, 26:29-36, 1994.

  18. Onur Demiroers, Nader Rafraf and Murat M. Tanik. Obtaining N-Queens Solutions from Magic Squares and Constructing Magic Squares from N-Queens Solutions. Journal of Recreational Mathematics, 24:272-280, 1992.

  19. Henry Ernest Dudeney. Amusements in mathematics, Chapter on Chessboard Problems, pages 89,215. Dover Publications, 1917. (Many reprints from 1919 to 1946; first Dover reprint: 1948.)

  20. A.E. Eiben, P.-E. Raué and Zs. Ruttkay. Solving Constraint Satisfaction Problems Using Genetic Algorithms. In Proceedings of the 1st IEEE World Conference on Computational Intelligence, pages 542-547. IEEE Service Center, 1994.

  21. A.E. Eiben, P.-E. Raué and Zs. Ruttkay. GA-easy and GA-hard Constraint Satisfaction Problems. In Proceedings of the ECAI-94 workshop on Constraint Processing, number 923 in Lecture Notes in Computer Science. Springer-Verlag, 1995.

  22. C. Erbas and M.M. Tanik. Storage Schemes for Parallel Memory Systems and the N-Queens Problem. In Proceedings of the 15th Anniversary of the ASME ETCE Confererence, Computer Applications Symposium, 1992.

  23. C. Erbas, S. Sarkeshik and M.M. Tanik. Different Perspectives of the N-Queens Problem. In Proceedings of the ACM 1992 Computer Science Conference, 1992.

  24. C. Erbas, M.M. Tanik and Z. Aliyazicioglu. Linear Congruence Equations for the Solutions of the N-Queens Problem. Information Processing Letters, 41:301-306, 1992.

  25. Cengiz Erbas and Murat M. Tanik. Generating Solutions to the N-Queens Problem Using 2-Circulants. Mathematics Magazine, 68:343-356, 1995.

  26. Bernd-Jürgen Falkowski and Lothar Schmitz. A Note on the Queens' Problem. Information Processing Letters, 23:39-46, 1986.

  27. J.P. Fillmore and S.G. Williamson. On Backtracking: A Combinatorial Description of the Algorithm. SIAM Journal on Computing, 3:41-55, 1974.

  28. John Foley. Manchester Dataflow Machine: Preliminary Benchmark Test Evaluation. Technical Report UMCS-87-11-2, University of Manchester, Computer Science Department, November 1987.

  29. L.R. Foulds and D.G. Johnson. An Application of Graph Theory and Integer Programming: Chessboard Nonattacking Puzzles. Mathematical Magazine, 57:95-104, 1984.

  30. Martin Gardner. Mathematical Games. Scientific American, 227:176-182, 1972.

  31. J. Ginsburg. Gauss's Arithmetization of the Problem of 8 Queens. Scripta Mathematica, 5:63-66, 1939.

  32. M.E. Goldsby. Solving the "N<=8 Queens'' Problem with CSP and Modula-2. SIGPLAN Notices, 22:43-52, 1987.

  33. Solomon W. Golomb and L. Baumert. Backtrack Programming. Journal of the ACM, 12:516-524, 1965.

  34. Solomon W. Golomb. Sphere Packing, Coding Metrics and Chess Puzzles. In R.C. Rose, editor, Chapel Hill Conference on Combinatorial Mathematics and its Applications, pages 176-189, 1970.

  35. J.S. Gray. Is Eight Enough? - The Eight Queens Problem Re-examined. SIGCSE Bulletin, 25:39-44,51, 1993.

  36. NEW Jun Gu. On a General Framework for Large-scale Constraint-based Optimization. ACM SIGART Bulletin, 2:8, 1991.

  37. S. Günther. (Unknown). Archiv der Mathematik und Physik, 56:281-292, 1874.
    Is this joint work with James Whitbread Lee Glaisher on determinants?

  38. NEW Jiawei Han, Ling Liu and Tong Lu, Evaluation of Declarative n-Queens Recursion: A Deductive Database Approach, Information Sciences, 105:69-100, 1998.

  39. B. Hansche and W. Vucenic. On the n-Queens Problem. Notices of the American Mathematical Society, 20:568, 1973.

  40. Peter Hayes. A Problem of Chess Queens. Journal of Recreational Mathematics, 24:264-271, 1992.

  41. Olof Heden. On the Modular n-Queen Problem. Discrete Mathematics, 102:155-161, 1992.

  42. Olof Heden. Maximal Partial Spreads and the Modular n-Queen Problem. Discrete Mathematics, 120:75-91, 1993.

  43. Sandra M. Hedetniemi, Stephen T. Hedetniemi and R. Reynolds. Combinatorial problems on chessboards: II. Chapter 6 in Domination in Graphs: Advanced Topics, Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, Eds., Marcel Dekker, New York (1998), pp. 133-162.

  44. Stephen T. Hedetniemi, A. A. McRae and D.A. Parks. Complexity results. Chapter 9 in Domination in Graphs: Advanced Topics, Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, Eds., Marcel Dekker, New York (1998), pp. 233-269.

  45. E.J. Hoffman, J.C. Loessi and R.C. Moore. Constructions for the Solution of the m Queens Problem. National Mathematics Magazine, March-April:66-72, 1969.

  46. Abdollah Homaifar, Joseph Turner, and Samia Ali. The n-Queens Problem and Genetic Algorithms. In Proceedings IEEE Southeast Conference, Volume 1, pages 262-267, 1992.

  47. F.K. Hwang and Ko-Wei Lih. Latin Squares and Superqueens. Journal of Combinatorial Theory, A35:110-114, 1983.

  48. Laxmikant V. Kalé. An Almost Perfect Heuristic for the N Nonattacking Queens Problem. Information Processing Letters, 34:173-178, 1990.

  49. J.G. Keating. Hopfield Networks, Neural Data Structures and the Nine Flies Problem: Neural Network Programming Projects for Undergraduates. SIGCSE Bulletin, 25:33-37,40,60, 1993.

  50. D.A. Klarner. The Problem of Reflecting Queens. American Mathematical Monthly, 74:953-955, 1967.

  51. Torleiv Kløve. The Modular n-Queen Problem. Discrete Mathematics, 19:289-291, 1977.

  52. Torleiv Kløve. The Modular n-Queen Problem II. Discrete Mathematics, 36:33-48, 1981.

  53. NEW D.E. Knuth, Dancing Links, pp 187-214 in: Millennial Perspectives in Computer Science, editors: Jim Davies, Bill Roscoe and Jim Woodcock; Palgrave, 2000.
    LINK

  54. F.C. Kuechmann. Solving the Eight Queens Problem. MacTech magazine: for Macintosh programmers & developers, 13:20-27, 1997.

  55. J. Mandziuk and B. Macukow. A Neural Network Designed to Solve the N-Queens Problem. Biological Cybernetics, 66:375-379, 1992.

  56. J. Mandziuk. Solving the N-Queens Problem with a Binary Hopfield-type Network. Synchronous and Asynchronous Model. Biological cybernetics: communication and control in organisms and automata, 72:439-446, 1995.

  57. Steven Minton, Mark D. Johnston, Andrew B. Philips and Philip Laird. Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems. Artificial Intelligence, 58:161-205, 1992.

  58. P. Morris. On the density of solutions in equilibrium points for the queens problem. In Proceedings AAAI-92, 428-433, 1992.

  59. B.A. Nadel. Representation Selection for Constraint Satisfaction: A Case Study Using n-Queens. IEEE Expert, June:16-23, 1990.

  60. Franz Nauck. Schach. Illustrierter Zeitung, 361:352, 1850.

  61. P. Naur. An Experiment on Program Development. BIT, 12:347-365, 1972.

  62. NEW E. Netto, Lehrbuch der Combinatorik, B.G. Teubner, Leipzig, 1901.

  63. Scott P. Nudelman. The Modular n-Queens Problem in Higher Dimensions. Discrete Mathematics, 146:159-167, 1995.

  64. Sang Bong Oh. An Analytical Evidence for Kalé's Heuristic for the N Queens Problem. Information Processing Letters, 46:51-54, 1993.

  65. Alton T. Olson. The Eight Queens Problem. Journal of Computers in Mathematics and Science Teaching, 12:93, 1993.

  66. G. Pólya. Mathematische Unterhaltungen und Spiele, II Band, 2 Auflage, (author: Wilhelm Ahrens), chapter Über die "doppelt-periodischen" Lösungen des n-Damen-Problems. B.G. Teubner, Leipzig und Berlin, 1918. pp. 364-374. Reprinted in Pólya: Collected works, vol. V, pp. 237-247.

  67. Matthias Reichling. A Simplified Solution of the N Queens' Problem. Information Processing Letters, 25:253-255, 1987.

  68. I. Rivin and R. Zabih. A Dynamic Programming Solution to the n-Queens Problem. Information Processing Letters, 41:253-256, 1992.

  69. I. Rivin, I. Vardi and P. Zimmermann. The n-Queens Problem. The American Mathematical Monthly, 101:629-639, 1994.

  70. J.S. Rohl. A Faster Lexicographical n-Queens Algorithm. Information Processing Letters, 17:231-233, 1983.

  71. J.T. Schwartz, R.B.K. Dewar, E. Dubinsky and E. Schonberg. Programming with Sets, An Introduction to SETL, chapter 7, pages 312-314. Springer-Verlag, 1986.

  72. NEW Oron Shagrir, A Neural Net with Self-inhibiting Units for the N-queens Problem, International Journal of Neural Systems 3:249-252, 1992.

  73. Rok Sosic and Jun Gu. Fast N-Queen Search on VAX and Bobcat Machines. AI Project Report, February, 1988.

  74. Rok Sosic and Jun Gu. How to Search For Million Queens. Technical Report UUCS-TR-88-008, Department of Computer Science, University of Utah, 1988.

  75. Rok Sosic and Jun Gu. A Polynomial Time Algorithm for the N-Queens Problem. SIGART Bulletin, 1:7-11, 1990.

  76. Rok Sosic and Jun Gu. 3,000,000 Queens in Less Than One Minute. SIGART Bulletin, 2:22-24, 1991.

  77. Rok Sosic and Jun Gu. Fast Search Algorithms for the N-Queens Problem. IEEE Transactions on Systems, Man and Cybernetics, 21:1572-1576, 1991.

  78. Rok Sosic and Jun Gu. Efficient Local Search with Conflict Minimization: A Case Study of the n-Queens Problem. IEEE Transactions on Knowledge and Data Engineering, 6:661-668, 1994.

  79. Rok Sosic. A Parallel Search Algoritm for the n-Queens Problem. In Parallel Computing and Transputer Conference, Wollongong, pages 162-172. IOS Press, 1994.

  80. H.S. Stone and J.M. Stone. Efficient Search Techniques - An Empirical Study of the N-Queens Problem. IBM Journal of Research and Development, 31:464-474, 1987.

  81. T. Tambouratzis. A Simulated Annealing Artificial Neural Network Implementation of the N-Queens Problem. International Journal of Intelligent Systems, 12:739-752, 1997.

  82. W.F.D. Theron and G. Geldenhuys. Domination by Queens on a Square Beehive. Discrete Mathematics, 178:213-220, 1998.

  83. Alexey Tolpygo, Follow-up: Queens on a Cylinder. Quantum: The Student Magazine of Math and Science, 6:38-42, 1996.

  84. Robert A. Wagner and Robert H. Geist. The Crippled Queen Placement Problem. Technical report, Duke University, 1984.

  85. Niklaus Wirth. Program Development by Stepwise Refinement. Communications of the ACM, 14:221-227, 1971.

  86. A.M. Yaglom and I.M. Yaglom. Challenging Mathematical Problems with Elementary Solutions. Holden-Day, 1964.

  87. Hiroaki Yoshio, Takayuki Baba, Nobuo Funabiki and Seishi Nishikawa. Proposal of an N-Parallel Computation Method for a Neural Network for the N Queens Problem. Electronics and Communications in Japan, 80:12-20, 1997.

  88. C.K. Yuen and M.D. Feng. Breadth-First Search in the Eight Queens Problem. SIGPLAN Notices. 29:51-55, 1994.


Questions/remarks to: kosters@liacs.nl.

18 February 2008 — http://www.liacs.nl/home/kosters/indexold.html