Parallel Graph Algorithms
(continued)

MaxFlow

v

* A flow network G=(V,E): a directed graph, where each
edge (u,v) € E has a nonnegative capacity c(u,v)>=0.

* |If (u,v) ¢ E, we assume that c(u,v)=0.

 Two distinct vertices : source s and sink t.

Find f: E -> R, such that

* Capacity constraint: For allu,v €V,
we require f(u,v) < c(u,v)
* Flow conservation: For all u eV\{s,t},

we require Y f(e)= > f(e)

e.in.v e.out.v

* Maximize m:Zf(S,V)

vel

A Long History

Initially defined by Ford and Fulkerson (1956)

Date Discoverer Running time
1969 Edmonds and Karp O(nm?)
1970 Dinic Oin’m)
1974 Karzanov 0(n’)
1977 Cherkasky O{n*m'?)
1978 Malhotra, Pramodh Kumar, O(n?)

and Maheshwan
1978 Galil Oin*"*m?")
1978 Galil and Naamad; Shiloach O(nm(log n)?)
1980 Sleator and Tanan O(nm log n)
1982 Shiloach and Vishkin O(n?)
1983 Gabow O(nm log U)
1984 Tarjan 0O(n*)
1985 Goldberg O(n’)
1986 Goldberg and Tarjan O(nm log(n?/m))
1986 Ahuja and Orlin O(nm + n’log U)

MaxFlow for sparse digraphs with m edges
and integer capacities between 1 and C

1997 length function O(m¥2log m log C) Goldberg-Rao
2012 compact network O(m? | log m) Orlin

? ? O(m) ?

Applications

Data mining.
Open-pit mining.
Bipartite matching.
Network reliability.
Baseball elimination.
Image segmentation.

Network connectivity.

Distributed computing.
Security of statistical data.
Egalitarian stable matching.
Network intrusion detection.
Multi-camera scene
reconstruction.
Sensor placement for
homeland security.
Many, many, more.

Example: Matching

Given an undirected graph G =(V, E) a subset of edges M € Eis a
matching if each node appears in at most one edge in M.

Vax matching: Given a graph, find a max cardinality matching.

Bipartite Matching

A graph G is bipartite if the nodes can be
partitioned into two subsets L and R such that
every edge connects a node in Lto one in R

Note that nodes
2,5, 3 and 4’
are not covered

matching: 1-2, 3-1', 4-5'

Bipartite Matching: Maxflow Formulation

Create digraph G’'=(LUR U {s, t}, E’).

Direct all edges from L to R, and assign infinite (or unit) capacity.
Add source s, and unit capacity edges from s to each node in L.
Add sink t, and unit capacity edges from each node in R to t.

Solving MaxFlow: The Ford-Fulkerson method

The Ford-Fulkerson method depends on three
important ideas that transcend the method and
are relevant to many flow algorithms and
problems: residual networks, augmenting paths,
and cuts. These ideas are essential to the
important max-flow min-cut theorem, which
characterizes the value of maximum flow in
terms of cuts of the flow network.

FORD-FULKERSON-METHOD(G,s,t)

initialize flow fto O

while there exists an augmenting path p
do augment flow f along p

return f

Augmenting Paths

* Given a flow network and a flow, the residual
Hetwork consists of edges that can admit more net
OoW.

* The amount of additional net flow from utov
before exceeding the capacity c(u,v) is the residual
capacity of (u,v), given by:

cr(u,v)=c (uy,v) - f (u,v)

and in the other direction:
ce(v, u)=c (v, u) + f (u, v).

e If fisaflowin Gand f’is aflow in the residual
network G,then f + f” is also a valid flow in G

Augmenting Paths

e Given a flow network G=(V,E) and a flow f, an
augmenting path is a simple path from sto tin
the residual network G, .

e Residual capacity of p : the maximum amount
of net flow that we can ship along the edges
of an augmenting path p, i.e.,

cr(p)=min{c(u,v):(u,v) is on p}.

2 3 1
o O O - @

The residual capacity is 1

The basic Ford-Fulkerson algorithm

FORD-FULKERSON(G,s,)
for each edge (u,v) € E[G]
do flu,v]=0
flvwul=0
while there exists a path p from s to tin the residual
network G,

do ¢;(p) = min{c;(u,v): (u,v) is in p}
for each edge (u,v) in p
do f [u,v] = f [uv]+cs(p)

Why for every edge (u,v) : (v,u)?

SO,
920

Why for every edge (u,v) : (v,u)?

TN
X3

Y

Augmented path with residual capacity = min(5,5,1) =1

Why for every edge (u,v) : (v,u)?

1/5
@ | > @
SN
S e ol
\ 5 /
5 5
O O

Y

Augmented path with residual capacity = min(4,5,5) =4

Why for every edge (u,v): (v,u)?

1/5
@ > @
7 4/5 X
S e ol
\ . /
5 4/5
O O

No Augmented Path possible anymore.
OPTIMAL FLOW =5 ????

For every edge (u,v) an additional
(back)edge (v,u) with c(v,u) = f(u,v)

5
o~ ’ @

%
N

S

N,
V4

For every edge (u,v) an additional
(back)edge (v,u) with c(v,u) = f(u,v)

Augmented path with residual capacity = min(5,5,1) =1

For every edge (u,v) an additional
(back)edge (v,u) with c(v,u) = f(u,v)

1/1

Augmented path with residual capacity = min(4,5,5) =4

For every edge (u,v) an additional
(back)edge (v,u) with c(v,u) = f(u,v)

For every edge (u,v) an additional
(back)edge (v,u) with c(v,u) = f(u,v)

1/1
N
O t
A
4/5
O

Augmented path with residual capacity = min(5,5,1,1,1) =1

1/4

) @

5/0

For every edge (u,v) an additional
(back)edge (v,u) with c(v,u) = f(u,v)

1/1

For every edge (u,v) an additional
(back)edge (v,u) with c(v,u) = f(u,v)

0/5
®' @
5/5 1/1
5/5
Se ol
1/5
1/5 5/5
P ®

FINAL SOLUTION f + f

More Complex Execution

In the following slides:

(a)-(d) Successive iterations of the while loop: The
left side of each part shows the residual network G,
from line 4 with a shaded augmenting path p. The
right side of each part shows the new flow f that
results from adding f, to f. The residual network in
(a) is the input network G. (e) The residual network
at the last while loop test. It has no augmenting
paths, and the flow f shown in (d) is therefore a
maximum flow.

12

Original Graph

10

P

Residual Graph 14

New Flow
4/12

4/16

Residual Graph New Flow

8
@
- |
‘/ A 4
4
10 | /4
DR

11/16

7/10

o

13

(b)

28

Residual Graph
New Flow

15/20

\
*

29

New Flow
12/12

Residual Graph

30

(e)

| NO AUGMENTED PATH FOUND |

31

Time Complexity of Ford Fulkerson

O(E max| f |)

As long as there is an open path through the residual graph,
send the minimum of the residual capacities on the path.

The algorithm is only guaranteed to terminate if all weights
are rational. Otherwise it is possible that the algorithm will not
converge to the maximum value. However, if the algorithm
terminates, it is guaranteed to find the maximum value.

The Edmonds-Karp algorithm

A practical implementation of Ford Fulkerson

Find the augmenting path using breadth-first
search.

Breadth-first search gives the shortest path for
graphs. (Assuming the length of each edge is 1.)

Time complexity of Edmonds-Karp algorithm is
O(VE?).
The proof is very hard and is not required here.

Relationship with Cut Sets

A cut in a network with source s and sink 7 is a
subset X C V, such that

sEX and & X

(X, V\X') is the set of edges from a vertex in X to
a vertex in V\X

The capacity of a cut X equals:

C(X) = E c(x)

XE(X,V\X)

=>»For every flow f: E->R and cut X,

Max Flow == Min Cut

Theorem 1: A flow in a network G is maximal iff
there exists no augmenting path in G

Theorem 2: The maximal flow in a network G equals
the minimal capacity cut set of G

Proof (sketch) Given that f is a maximal flow in G. Construct X
such that s € X, and for all v for which there exists an augmenting
path from s to v: v € X. Then t cannot belong to X, because there
is no augmenting path anymore. So X is a proper cut of G. So

C (X) = |f| and |f| <= C(Y) for any cut Y. So X is the minimal cut.
The reverse follows trivially.

Push-Relabel Algorithm by Goldberg
and Tarjan (JACM 1988)

e Input: network (G = (V,E), s,t,c¢)
o hls] :=|V|

e for each v € V — {s} do h[v] :==0
e for each (s,v) € E do f(s,v) := ¢(s,v)

ev) is e while f is not a feasible flow

excess — let (u,v) = c(u,v) + f(u,v) — f(v,u) be the capacities of
flow in th¢ residual network

node v

— if/there is a vertex v € V — {s,t} and a vertex w € V such
hat ef(v) > 0, h(v) > h(w), and ¢/ (v, w) > 0 then

* push min{c/(v,w), es(v)} units of flow on the edge (v, w)
— else, let v be a vertex such that ef(v) > 0, and set hfv] :=
hlv] + 1

e output f

Note c’(u,v) = the residual capacity of the back-edge of (u,v), so an edge going from v to
u. The update of the remaining capacity of (u,v) is done on c(u,v)!!!

The labeling function /

Only flow can be pushed from a node v to w if
h(v) > h(w)

Once raised, A(v) will never be decremented
Ping Pong effects are avoided
The algorithm will actually finish

15

n

nnw

n

nHHnm

Example

n

n

nn e

nna

10

Excess flow is pushed to a

a\' 8 b
| h=0 | h=0
e=15 e=0
4 3
15
7
4
4 10
C 6 d
h=0 h=0
e=0 e=0

First h[a] is incremented to 1 and then excess flow
(12) is pushed from a to b (8) and d (4)

l/-- a “\' l/-— b “\\
| \ J |
| h=1 { h=0

\ e=3 "(12]' e=8 /

h[a] is incremented to 7!! then excess flow
(3) is pushed (back) from ato s

e \ i
a
: h=17 4 h=0
e=0 12 e=28
\°""/ 3

12 /
- 3
|'/ \
| h=6)
N

n >
H i m
[
n
nn e

First h[b] is incremented to 1, then
excess flow (6) is pushed from b to ¢ (3) and t (3)

/ N\
2 :lz"

12

10

First h[c] is incremented to 1, then
excess flow (3) is pushed from cto d

b
h=1
e=2
12 ;
3 3
5
4 — e 10
. C \ 3 d '
l. h= (]5 I | h = g) .|
e = e =
___/‘ 7 _/

First h[d] is incremented to 1, then
excess flow (7) is pushed fromd to t

12

b is the only node with excess > 0, b has no outgoing
residual edges, so h[b] is incremented to 8 and b will
push back excess flow (2) to a

— 5 .
e
{ E \‘v' >'/ b \'-.
' h=17 | | h=8 |
e=2 M e=0
N/ 10 o
12
3 7
e | o
5 7
4 3
C 3 d
h=1 h=1
e=0 e=0

node a is the only active node with
excess flow > 0 and will push flow (2)back to

/

.
~

nne

n

A parallel version of push relabel

Master
Processor

Slave
Processors

Master
Processor

(START)

r
| Read data

'

| Partition network

!

e — 7/ Newwork /
£ dam

Classify

-+

boundmiy nodes

Push flow
inside region

Discharge flow
out of region

Group-/
or group-i/
active boundary

Yes

inside region

Classify Classify L
boundaxiy nodes bounda?' nodes
Push flow Push flow

inside region

Discharge flow
out of region

Discharge flow
out of region

Merge regions
together

Perform

push-relabel method

Solution

. END)

Output }____

B 7
./ Max-flow

/ solution /

Preprocessing

Stage 1

Stage 2

