
Parallel	Graph	Algorithms	
(continued)

MaxFlow
•

• A	flow	network G=(V,E):	a	directed	graph,	where	each	
edge	(u,v)	Î E	has	a	nonnegative	capacity c(u,v)>=0.

• If	(u,v)	Ï E,	we	assume	that	c(u,v)=0.
• Two	distinct		vertices	: source s	and	sink t.

Find	f:	E	->	R,	such	that

• Capacity	constraint:	For	all	u,v Î V,	
we	require	 f(u,v)	 £ c(u,v)

• Flow	conservation:	For	all	u	ÎV\{s,t},	
we	require	

• Maximize	

å å=
vine voute

efef
.. ..

)()(

å
Î

=
Vv

vsff),(

A	Long	History
•

Initially	defined	by	Ford	and	Fulkerson	(1956)

MaxFlow for	sparse	digraphs	with	m	edges	
and	integer	capacities	between	1	and	C

Applications

• Data	mining.
• Open-pit	mining.
• Bipartite	matching.
• Network	reliability.
• Baseball	elimination.
• Image	segmentation.
• Network	connectivity.

• Distributed	computing.
• Security	of	statistical	data.
• Egalitarian	stable	matching.
• Network	intrusion	detection.
• Multi-camera	scene	

reconstruction.
• Sensor	placement	for	

homeland	security.
• Many,	many,	more.

Example:	Matching
•

Given	an	undirected	graph	G	=	(V,	E)	a	subset	of	edges	M	⊆ E	is	a	
matching	if	each	node	appears	in	at	most	one	edge	in	M.

Max	matching:	Given	a	graph,	find	a	max	cardinality	matching.

Bipartite	Matching

A	graph	G	is	bipartite if	the	nodes	can	be	
partitioned	into	two	subsets	L	and	R	such	that	
every edge	connects	a	node	in	L	to	one	in	R

Note	that	nodes	
2,	5,	3’	and	4’	
are	not	covered

Bipartite	Matching:	Maxflow Formulation

• Create	digraph	G’=	(L∪R∪{s,	t},	E’).
• Direct	all	edges	from	L to	R,	and	assign	infinite	(or	unit)	capacity.
• Add	source	s,	and	unit	capacity	edges	from	s to	each	node	in	L.
• Add	sink	t,	and	unit	capacity	edges	from	each	node	in	R to	t.

Solving	MaxFlow:	The	Ford-Fulkerson	method

The	Ford-Fulkerson	method	depends	on	three	
important	ideas	that	transcend	the	method	and	
are	relevant	to	many	flow	algorithms	and	
problems:	residual	networks,	augmenting	paths,	
and cuts.	These	ideas	are	essential	to	the	
important	max-flow	min-cut	theorem,	which	
characterizes	the	value	of	maximum	flow	in	
terms	of	cuts	of	the	flow	network.

FORD-FULKERSON-METHOD(G,s,t)
initialize	flow	f to	0
while there	exists	an	augmenting path	p

do augment flow	f along	p
return	f

Augmenting	Paths

• Given	a	flow	network	and	a	flow,	the	residual	
network consists	of	edges	that	can	admit	more	net	
flow.	

• The	amount	of	additional	net	flow		from	u to	v
before	exceeding	the	capacity	c(u,v)	is	the	residual	
capacity of	(u,v),	given	by:	

cf (u,v)=c	(u,v)	- f	(u,v)

and	in	the	other	direction:						
cf (v,	u)=c	(v,	u)	+	f	(u,	v).

• If	f is	a	flow	in	G	and	f’ is	a	flow	in	the	residual	
network	Gf then	f	+	f’ is	also	a	valid	flow	in	G

Augmenting	Paths

• Given	a	flow	network	G=(V,E)	and	a	flow	f,	an	
augmenting	path is	a	simple	path	from	s to	t in	
the	residual	network	Gf .

• Residual	capacity of	p	:	the	maximum	amount	
of	net	flow	that	we	can	ship	along	the	edges	
of	an	augmenting	path	p,	i.e.,		

cf (p)=min{cf (u,v):(u,v)	is	on	p}.

2 3 1

The	residual	capacity	is	1

The	basic	Ford-Fulkerson	algorithm

FORD-FULKERSON(G,s,t)
for each	edge	(u,v) Î E[G]

do f	[u,v]	= 0
f	[v,u]	=	0

while there	exists	a	path	p from	s to	t in	the	residual	
network	Gf

do cf (p)	=	min{cf (u,v):	(u,v)	is	in	p}
for each	edge	(u,v)	in	p

do f	[u,v]	=	f	[u,v]+cf (p)

Why	for	every	edge	(u,v) :	(v,u)?

5 1

5
5

5

5

5

s t

Why	for	every	edge	(u,v) :	(v,u)?

5 1

5
5

5

5

5

Augmented	path	with	residual	capacity	=	min(5,5,1)	=	1

s t

Why	for	every	edge	(u,v) :	(v,u)?

1/5 1/1

5
5

1/5

5

5

Augmented	path	with	residual	capacity	=	min(4,5,5)	=	4

s t

Why	for	every	edge	(u,v):	(v,u)?

5/5 1/1

4/5
5

1/5

4/5

5

No	Augmented	Path	possible	anymore.
OPTIMAL	FLOW	=	5	????

s t

For	every	edge	(u,v) an	additional	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)

5 1

5

5

5

5

5

s t
0

0

0

0

0

0

0

For	every	edge	(u,v) an	additional	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)

5 1

5

5

5

5

5

s t
0

0

0

0

0

0

0

Augmented	path	with	residual	capacity	=	min(5,5,1)	=	1

For	every	edge	(u,v) an	additional	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)

1/5 1/1

5

5

1/5

5

5

s t
0/1

0

0/1

0

0

0

0/1

Augmented	path	with	residual	capacity	=	min(4,5,5)	=	4

For	every	edge	(u,v) an	additional	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)

5/5 1/1

4/5

5

1/5

4/5

5

s t
0/5

0

0/1

0/4

0

0/4

0/1

Now	Still	Augmented	Paths	POSSIBLE	!!!!!!!!

For	every	edge	(u,v) an	additional	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)

5/0 1/1

4/5

5

1/4

4/5

5

s t
0/5

0

0/1

0/4

0

0/4

0/1

Augmented	path	with	residual	capacity	=	min(5,5,1,1,1)	=	1

For	every	edge	(u,v) an	additional	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)

5/0 1/1

5/5

1/5

1/5

5/5

1/5

s t
0/5

0/1

1/1

0/5

0/1

0/5

0/1

MaxFlow =	6	!!!!!!

For	every	edge	(u,v) an	additional	
(back)edge	(v,u)	with	c(v,u)	=	f(u,v)

5/5 1/1

5/5

1/5

0/5

5/5

1/5

s t

FINAL	SOLUTION	f	+	f’

More	Complex	Execution

In	the	following	slides:
(a)-(d)	Successive	iterations	of	the	while loop:	The	
left	side	of	each	part	shows	the	residual	network	Gf
from	line	4	with	a	shaded	augmenting	path	p.	The	
right	side	of	each	part	shows	the	new	flow	f that	
results	from	adding	fp to	f.	The	residual	network	in	
(a)	is	the	input	network	G.	(e)	The	residual	network	
at	the	last	while loop	test.	It	has	no	augmenting	
paths,	and	the	flow	f shown	in	(d)	is	therefore	a	
maximum	flow.

s

20

7
9

v2 v4

t

v3v116

13

12

10 4

4

14

4/9
s

v2 v4

t

v3v14/16

13

4/12

10 4

20

4/4

7

4/14

(a)

Augmented	path	with	maximal	residual	flow	of	4

s

20

7
9

v2 v4

t

v3v116

13

12

10 4

4
14

Original	Graph

Residual	Graph New	Flow

28

5
s

v2 v4

t

v3v1
12

13

8

10 4

20

4

7

4

4
4
4

10
4/9

s

v2 v4

t

v3v111/16

13

4/12

7/10 4

7/20

4/4

7/7

11/14

(b)

Because	there	is	a	(forward)	flow	of	4	on	this	
edge,	there	is	a	residual	flow	capacity	of	4	on	
the	back-edge,	possibly	nullifying	the	forward	
flow.	The	residual	of	10	equals	the	capacity	14	–
the	forward	flow	already	established	4.

New	FlowResidual	Graph

29

5
s

v2 v4

t

v3v15

13

8

3 11

4

7

11

11
4
4

3

13

7
4/9

s

v2 v4

t

v3v111/16

8/13

12/12

10 1/4

15/20

4/4

7/7

11/14

(c)

8	was	pushed	on	the	“back	edges”	from	v1 to	v2
pushing	7	to	the	edge	with	capacities	7/10	
resulting	in	(0/)10	and	1	was	pushed	to	the	
edge	with	capacities	(0/)4	resulting	in	1/4.

New	Flow
Residual	Graph

30

5
s

v2 v4

t

v3v15

8

11 3

4

7

11

11

12

4

3

5

15
5 9

s

v2 v4

t

v3v111/16

12/13

12/12

10 1/4

19/20

4/4

7/7

11/14

(d)

Original	there	was	no	edge	(edge	with	capacity	
0)	going	from	v2 to	v3,	but	because	there	was	
forward	flow	established	on	v3 to	v2,	the	
capacity	of	(v2,v3)	was	increased	to	4!!!!!

The	already	established	flow	of	4	on	edge	(v3,v2)	
was	nullified,	thereby	increasing	the	(residual)	
capacity	on	this	edge	to	the	original	value	of	9

New	Flow

Residual	Graph

31

s

v2 v4

t

v3v15

12

12

11 3

1

4

11

9

3

1
197

(e)

NO	AUGMENTED	PATH	FOUNDResidual	Graph

Time	Complexity	of	Ford	Fulkerson

O(Emax|	f |)

As	long	as	there	is	an	open	path	through	the	residual	graph,	
send	the	minimum	of	the	residual	capacities	on	the	path.

The	algorithm	is	only	guaranteed	to	terminate	if	all	weights	
are	rational.	Otherwise	it	is	possible	that	the	algorithm	will	not	
converge	to	the	maximum	value.	However,	if	the	algorithm	
terminates,	it	is	guaranteed	to	find	the	maximum	value.

The	Edmonds-Karp	algorithm
A	practical	implementation	of	Ford	Fulkerson

• Find	the	augmenting	path	using	breadth-first	
search.

• Breadth-first	search	gives	the	shortest	path	for	
graphs.	(Assuming	the	length	of	each	edge	is	1.)

• Time	complexity	of	Edmonds-Karp	algorithm	is	
O(VE2).

• The	proof		is	very	hard	and	is	not	required	here.	

Relationship	with	Cut	Sets
A	cut in	a	network with	source	s and	sink	t is	a	
subset												,	such	that

and	
(X,	V\X)	is	the	set	of	edges	from	a	vertex	in	X to	
a	vertex	in	V\X
The	capacity of	a	cut	X equals:

èFor	every	flow	f:	E ->	R	and	cut	X,

s ∈ X t ∉ X
X ⊂V

C(X) = c(x)
x∈(X,V \X)
∑

f ≤C(X)

Max	Flow	==	Min	Cut
Theorem	1:	A	flow	in	a	network	G	is	maximal	iff
there	exists	no	augmenting	path	in	G

Theorem	2:	The	maximal	flow	in	a	network	G	equals	
the	minimal	capacity	cut	set	of	G

Proof	(sketch)	Given	that	f	is	a	maximal	flow	in	G.	Construct	X	
such	that	s	ε X,	and	for	all	v	for	which	there	exists	an	augmenting	
path	from	s	to	v:	v	ε X.	Then	t	cannot	belong	to	X,	because	there	
is	no	augmenting	path	anymore.	So	X	is	a	proper	cut	of	G.	So	
C	(X)	=	|f|	and	|f|	<=	C	(Y)	for	any	cut	Y.	So	X	is	the	minimal	cut.	
The	reverse	follows	trivially.	

Push-Relabel Algorithm	by	Goldberg	
and	Tarjan (JACM	1988)

•

Note	c’(u,v)	=	the	residual	capacity	of	the	back-edge	of	(u,v),	so	an	edge	going	from	v	to	
u.	The	update		of	the	remaining	capacity	of	(u,v)	is	done	on	c(u,v)!!!

ef(v) is	
excess	
flow	in	
node	v

The	labeling	function	h

• Only	flow	can	be	pushed	from	a	node	v to	w if	
h(v) > h(w)

• Once	raised,	h(v) will	never	be	decremented
• Ping	Pong	effects	are	avoided
• The	algorithm	will	actually	finish

Example

•

Excess	flow	is	pushed	to	a

•

First	h[a] is	incremented	to	1	and	then	excess	flow	
(12)	is	pushed	from	a	to	b	(8)	and	d	(4)

•

h[a]	is	incremented	to	7!!	then	excess	flow	
(3)	is	pushed	(back)	from	a	to	s

•

First	h[b]	is	incremented	to	1,	then	
excess	flow	(6)	is	pushed	from	b	to	c	(3)	and	t	(3)

•

First	h[c]	is	incremented	to	1,	then
excess	flow	(3)	is	pushed	from	c	to	d

•

First	h[d]	is	incremented	to	1,	then
excess	flow	(7)	is	pushed	from	d	to	t

•

b is	the	only	node	with	excess	>	0,	b	has	no	outgoing	
residual	edges,	so	h[b]	is	incremented	to	8	and	b	will	

push	back excess	flow	(2)	to	a

•

node	a	is	the	only	active	node	with	
excess	flow	>	0	and	will	push	flow	(2)back	to	

s

•

A	parallel	version	of	push	relabel
•

