Parallel Numerical Algorithms

Need for standardization

- With the advent of parallel (high performance) computers came the disillusion of bad performance
- The peak rates advertised with the introduction of new machines were mostly not attainable for real life applications
- A need arose to standardize primitives of computations
- This effort also was based on already developed numerical software libraries: LINPACK, EISPACK, FISHPACK, Harwell

Basic Linear Algebra Subroutines (BLAS)

Three levels

- BLAS 1: vector/vector operations

```
SAXPY \(\quad y \leftarrow y+\alpha . x \quad x, y=\) vector, \(\alpha=\) scalar
DOTPR \(\quad \alpha \leftarrow(x, y)\)
SUM \(\quad y \leftarrow y+x\)
```

- BLAS 2: matrix/vector operations

$$
\begin{gathered}
y \leftarrow B y+\alpha A x \\
y \leftarrow A^{T} x \\
(\alpha=\text { scalar, } A=\text { matrix }, x=\text { vector })
\end{gathered}
$$

- BLAS 3: matrix/matrix operations

$$
\begin{gathered}
C \leftarrow \beta \cdot B+\alpha \cdot A \cdot B \\
C \leftarrow C+A \cdot B .
\end{gathered}
$$

Input/Output Data Reuse

BLAS 1 Example: Dotproduct (x, y)
Input Size: $2 n$
Operation Count: $2 n-1$
Output Size: 1
$\rightarrow 1$ operation per input element and 2 n per output element
BLAS 2 Example: $y=A x$
Input Size: $\quad n^{2}+n$
Operation Count: $2 n^{2}-n$
Output Size: $\quad n$
$\rightarrow 2$ operations per input element and $2 n$ per output element
BLAS 3 Example: C=A.B
Input Size: $2 n^{2}$
Operation Count: $2 n^{3}-n^{2}$
Output Size: $\quad n^{2}$
\rightarrow n operations per input element and $2 n$ per output element

More data reuse leads to

- Better Cache/Register Utilization
- Less Communication Overhead
- More effective input, output, or intermediate data decomposition

Example Dotproduct (BLAS 1)

```
DO I = 1, N
    C=C + A(I) * B(I)
ENDDO
```

Straightforward parallel execution on P processors:

```
DOALL II = 1,N,N/P
        DO I = II, II+N/P - 1
            C(II) =C(II) +A(I)*B(I)
        ENDDO
        C=C + C(II)
    ENDDOALL
```

However, communication costs are involved!!!!!!!

```
DOALL II = 1,N,N/P # N/P is the stride, so II = 1, 1+N/P, 1+2*N/P, ..
    RECEIVE (A(II:II+N/P-1), B(II:II+N/P-1))
    DO I = II, II+N/P - 1
        C(II) =C(II) +A(I) * B(I)
    ENDDO
    C = C + C(II) Esynchronization, i.e. SEND C(J) TO MASTER PROCESS
ENDDOALL
```

So, on a total of $2 \mathrm{~N}-1$ computations: 2 N continuous data transmissions and P separate communications are needed. With $\mathrm{t}_{\mathrm{s}}+\mathrm{mt}_{\mathrm{w}}\left(\mathrm{t}_{\mathrm{s}}\right.$ startup time, t_{w} per word transmission time) communication costs for m words, this gives:

$$
\begin{aligned}
& P .\left(\mathrm{t}_{\mathrm{s}}+(2 \mathrm{~N} / \mathrm{P}) \mathrm{t}_{\mathrm{w}}\right)+\mathrm{P} .\left(\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{w}}\right)= \\
& (\mathrm{P}+\mathrm{P}) \cdot \mathrm{t}_{\mathrm{s}}+(2 \mathrm{~N}+\mathrm{P}) \mathrm{t}_{\mathrm{w}}=2 \mathrm{P}_{\mathrm{s}}+(2 \mathrm{~N}+\mathrm{P}) \mathrm{t}_{\mathrm{w}}
\end{aligned}
$$

communication costs, which is significant! For instance if t_{s} is comparable to the cost of a computational step, then the communication overhead is greater than the computational costs $(2 \mathrm{P}+1)$.
\rightarrow BLAS 1 routines were mainly used for VECTOR computing (pipelining) vadd, vdotpr, vmultadd, etc.

Example MatVec (BLAS 2)

```
DOI = 1, N
    DO J = 1, N
        C(I) =C(I) +A(I,J) * B(J)
    ENDDO
ENDDO
```

Parallel execution on P processors:

```
DOI=1,N
    DOALL JJ = 1, N, N/P
        DO J = JJ, JJ+N/P - 1
        C(JJ)=C(JJ)+A(I,J) * B(J)
    ENDDO
    C(I) = C(I) + C(JJ)
    ENDDOALL
ENDDO
```

This is essentially is a repetition of BLAS 1 (dotproduct) operations!!!!! NOTHING GAINED. HOWEVER...

MatVec can also be computed as:

$$
\begin{aligned}
& \text { DO } \mathrm{J}=1, \mathrm{~N} \\
& \text { DOALL II }=1, \mathrm{~N}, \mathrm{~N} / \mathrm{P} \\
& \text { DO I }=\mathrm{II}, \mathrm{II}+\mathrm{N} / \mathrm{P}-1 \\
& \mathrm{C}(\mathrm{I})=\mathrm{C}(\mathrm{I})+\mathrm{A}(\mathrm{I}, \mathrm{~J}) * B(\mathrm{~J})
\end{aligned}
$$

ENDDO

ENDDOALL

ENDDO

In this computation the basic (inner) loop does not execute a dotproduct, but a BLAS 1 SAXPY operation: $y=y+a . x$ More importantly, the vector C(II:II+N/P-1) can be stored in registers in each processor, and reused N times
Also the fan-in computations for each $\mathrm{C}(\mathrm{I})$ are not needed anymore!! So only initial distribution costs are paid for. So, overhead is reduced to

$$
\mathrm{Pt}_{\mathrm{s}}+(2 \mathrm{~N}) \mathrm{t}_{\mathrm{w}}
$$

Example MatMat (BLAS 3)

$$
\begin{aligned}
& \text { DO I }=1, \mathrm{~N} \\
& \text { DO } \mathrm{J}=1, \mathrm{~N} \\
& \text { DO } \mathrm{K}=1, \mathrm{~N} \\
& \mathrm{C}(\mathrm{I}, \mathrm{~K})=\mathrm{C}(\mathrm{I}, \mathrm{~K})+\mathrm{A}(\mathrm{I}, \mathrm{~J}) * \mathrm{~B}(\mathrm{~J}, \mathrm{~K}) \\
& \text { ENDO } \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

Then because of the multi dimensionality we have different ways of executing this loop in parallel.

Middle product form (K-loop outer loop):

```
DO K=1,N
    DOALL II = 1,N,N/VP
        DOALL JJ = 1,N,N/VP
            DO I = II, II+N/VP-1
            DO J = JJ, JJ+N/VP-1
                C(I,K) =C(I,K) +A(I,J) * B(J,K)
            ENDO
            ENDDO
            ENDDOALL
    ENDOALL
ENDDO
```

In this implementation the inner loop is a BLAS 2 MatVec routine.

Inner product form (I-loop outer loop):

```
DOI=1,N
    DO J = 1, N
        DOALL KK = 1, N,N/P
                DO K = KK, KK+N/P-1
            C(I,K)=C(I,K)+A(I,J) * B(J,K)
                ENDO
            ENDDOALL
    ENDDO
ENDDO
```

\rightarrow In this implementation the inner loop is a BLAS 1 SAXPY routine.
The inner product form has a second variant:

```
DOK=1, \(N\)
    DO I = 1, N
        DOALL JJ \(=1, \mathrm{~N}, \mathrm{~N} / \mathrm{P}\)
        DO J = JJ, JJ \(+\mathrm{N} / \mathrm{P}-1\)
            \(C(I, K)=C(I, K)+A(I, J) * B(J, K)\)
        ENDO
    ENDDOALL
```

 ENDDO
 ENDDO

In this implementation the inner loop executes a BLAS 1 DOTPRODUCT

Outer product form (J-loop outer loop):

```
DO J = 1, N
    DO K = 1, N
        DOALL II = 1, N, N/P
        DOI \(=I I, I I+N / P-1\)
        \(C(I, K)=C(I, K)+A(I, J) * B(J, K)\)
            ENDO
```

 ENDDOALL
 ENDDO
 ENDDO

Another look at MatMat

The original loop can be written as follows:

```
DO II = 1, N, M1
    DO JJ = 1 ,N, M2
        DO KK = 1, N, M3
            DO I = II, II + M1 - 1
                DO J = JJ, JJ + M2 - 1
                                DO K = KK, KK + M3 - 1
                                    C(I,K) =C(I,K) +A(I,J) * B(J,K)
                                ENDO
                                ENDDO
            ENDDO
        ENDDO
    ENDDO
ENDDO
```

\rightarrow Any of these loops can be executed in parallel!!
\rightarrow These loops can be permuted in any order as long as II becomes before I, etc.
\Rightarrow So many different implementations possible
$\rightarrow \mathrm{M} 1, \mathrm{M} 2$, and M 3 can be used to control the degree of parallelism but also the size of cache usage.

In fact

$$
\begin{aligned}
& \text { DO I = II, II }+\mathrm{M} 1-1 \\
& \text { DO } \mathrm{J}=\mathrm{JJ}, \mathrm{JJ}+\mathrm{M} 2-1 \\
& \mathrm{DO} \mathrm{~K}=\mathrm{KK}, \mathrm{KK}+\mathrm{M} 3-1 \\
& \mathrm{C}(\mathrm{I}, \mathrm{~K})=\mathrm{C}(\mathrm{I}, \mathrm{~K})+\mathrm{A}(\mathrm{I}, \mathrm{~J}) * \mathrm{~B}(\mathrm{~J}, \mathrm{~K}) \\
& \text { ENDO } \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

Corresponds to a sub matrix multiply of size $\mathrm{M} 1 \times \mathrm{M} 2$ times M2xM3
By choosing M1, M2 and M3 carefully, this triple nested loop can each time run out of cache

Embeddings of BLAS routines

Many scientific computations involve the solution of a system of linear equations

$$
\begin{array}{cccccc}
a_{0,0} x_{0} & +a_{0,1} x_{1} & +\cdots+a_{0, n-1} x_{n-1} & = & b_{0} \\
a_{1,0} x_{0} & +a_{1,1} x_{1} & +\cdots+a_{1, n-1} x_{n-1} & = & b_{1} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
a_{n-1,0} x_{0} & +a_{n-1,1} x_{1} & +\cdots+a_{n-1, n-1} x_{n-1} & = & b_{n-1} .
\end{array}
$$

This is written as $\mathrm{A} x=\mathrm{b}$ where A is an $n \times n$ matrix with $\mathrm{A}[i, j]=a_{i j}, \mathrm{~b}$ is an $n \times l$ vector $\left[b_{0}\right.$, $\left.b_{1}, \ldots, b_{n}\right]^{\mathrm{T}}$, and x is the solution.

LU Factorization

Find

Such that A $=$ L.U
Then solving $A x=b$ corresponds to solving

$$
L(U x)=b
$$

This can be done in 2 steps, triangular solves:
Lc = b (forward substitution)
U $\mathrm{x}=\mathrm{c}$ (backward substitution)

Backward substitution $\mathrm{Ux}=\mathrm{y}$

$$
\begin{aligned}
x_{0}+u_{0,1} x_{1}+u_{0,2} x_{2}+\cdots & +u_{0, n-1} x_{n-1}
\end{aligned}=y_{0}, ~+\cdots \quad u_{1, n-1} x_{n-1}=1
$$

The factors L and U can be obtained through Gaussian Elimination

$$
\left.\begin{array}{l}
\left\{\begin{array}{rrrrr}
2 x_{1} & + & 3 x_{2} & + & x_{3} \\
x_{1} & + & x_{2} & + & 3 x_{3} \\
=1 \\
3 x_{1} & + & 2 x_{2} & + & x_{3}
\end{array}=3\right.
\end{array}\right\} \begin{aligned}
& A=\left(\begin{array}{lll}
2 & 3 & 1 \\
1 & 1 & 3 \\
3 & 2 & 1
\end{array}\right), B=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \\
& \text { DO I = 1, N } \\
& \text { PIVOT = A(I, I) } \\
& \text { DO J = I +1, N } \\
& \text { MULT }=\mathrm{A}(\mathrm{~J}, \mathrm{I}) / \text { PIVOT } \\
& \text { A(J, I) }=\mathrm{MULT} \\
& \text { DO K }=\mathrm{I}+1, \mathrm{~N} \\
& \quad \text { A(J, K) }=\mathrm{A}(\mathrm{~J}, \mathrm{~K})-\mathrm{MULT} * \mathrm{~A}(\mathrm{I}, \mathrm{~K})
\end{aligned}
$$

ENDDO
ENDDO

This yields:

$$
\tilde{A}=\left(\begin{array}{ccc}
2 & 3 & 1 \\
\frac{1}{2} & -\frac{1}{2} & 2 \frac{1}{2} \\
1 \frac{1}{2} & 5 & -13
\end{array}\right) \text {. So, } L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
1 \frac{1}{2} & 5 & 1
\end{array}\right] \text { and } U=\left(\begin{array}{ccc}
2 & 3 & 1 \\
0 & -\frac{1}{2} & 2 \frac{1}{2} \\
0 & 0 & -13
\end{array}\right) \text {. }
$$

After L and U are computed the system is solved by:

forward substitution:

$$
\begin{aligned}
& D O I=1, N \\
& C(I)=B(I) \\
& D O J=1, I-1 \\
& C(I)=C(I)-A(I, J) * C(J) \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

back substitution:

$$
\begin{aligned}
& \text { DO I }=\mathrm{N}, 1 \\
& \mathrm{X}(\mathrm{I})=\mathrm{C}(\mathrm{I}) \\
& \text { DO J }=\mathrm{I}+1, \mathrm{~N} \\
& \mathrm{X}(\mathrm{I})=\mathrm{X}(\mathrm{I})-\mathrm{A}(\mathrm{I}, \mathrm{~J}) * X(\mathrm{~J}) \\
& \text { ENDDO } \\
& \text { X(I) }=\mathrm{X}(\mathrm{I}) / \mathrm{A}(\mathrm{I}, \mathrm{I}) \\
& \text { ENDDO }
\end{aligned}
$$

Block LU decomposition

Write A as follows

So

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
L_{21} & I
\end{array}\right)\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & B
\end{array}\right) \begin{gathered}
\text { To be stored as: } \\
{\left[\begin{array}{ll}
A_{11}^{-1} & A_{12} \\
L_{21} & B
\end{array}\right]}
\end{gathered}
$$

$$
A=\left(\begin{array}{cc}
A_{11} & A_{12} \\
L_{21} A_{11} & L_{21} A_{12}+B
\end{array}\right)
$$

Let k be the dimension of A_{11} and $N-k$ the dimension of A_{22} Then the algorithm becomes:

$$
\left[\begin{array}{lr}
A_{11} \leftarrow A_{11}^{-1} & \\
A_{21} \leftarrow L_{21}=A_{21} A_{11} & \left(A_{21} A_{1 I}^{-1}\right) A_{1 I}=A_{21} \\
A_{22} \leftarrow B=A_{22}-L_{21} A_{12} &
\end{array}\right.
$$

And proceed recursively on B

As a results
\rightarrow This algorithm only has only to compute the inverse of A_{11}, otherwise only matrix multiplies are performed

The only complication is that back substitution is a bit more tedious.

Backward Substitution

1. Solve $U_{4} x_{4}=c_{4}$
2. $c_{3}=c_{3}-\tilde{U}_{3} \cdot x_{4}$
3. Solve $U_{3} x_{3}=c_{3}$
4. $c_{2}=c_{2}-\tilde{U}_{2} \cdot\left[\begin{array}{l}x_{3} \\ x_{4}\end{array}\right]$
5. Solve $U_{2} x_{2}=c_{2}$

Note that $\boldsymbol{U}_{4} x_{4}=c_{4}$ can
be solved directly by
$\boldsymbol{x}_{4}=A_{44}{ }^{-1} c_{4}$ etc
6. $c_{1}=c_{1}-\tilde{U}_{1} \cdot\left[\begin{array}{l}x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$
7. Solve $U_{1} x_{1}=c_{1}$

Forward Substitution

1. $c_{1}=b_{1}$

2. $c_{2}=b_{2}-L_{2} \cdot c_{1}$
3. $c_{3}=b_{3}-L_{3} \cdot\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$
4. $c_{4}=b_{4}-L_{4} \cdot\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$
