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Data	Flow	Computing

Traditionally,	compilers	analyze	program	source	code	for	
data	dependencies	between	instructions	in	order	to	
better	organize	the	instruction	sequences	in	the	binary	
output	files.

A	dataflow	compiler	records	these	dependencies	by	
creating	unique	tags for	each	dependency	instead	of	
using	variable	names.	By	giving	each	dependency	a	
unique	tag,	it	allows	the	non-dependent	code	segments	
in	the	binary	to	be	executed	out	of	order and	in	parallel.



Dataflow	Execution
• Programs	are	loaded	into	the	Content	Addressable	Memory

(CAM)	of	a	dynamic	dataflow	computer.	
• When	all	of	the	tagged	operands of	an	instruction	become	

available	(that	is,	output	from	previous	instructions	and/or	user	
input),	the	instruction	is	marked	as	ready for	execution	by	an	
execution	unit.	This	is	known	as	activating or	firing the	
instruction.

• Once	an	instruction	is	completed	by	an	execution	unit,	its	
output	data	is	stored	(with	its	tag)	in	the	CAM.	Any	instructions	
that	are	dependent	upon	this	particular	datum	(identified	by	its	
tag	value)	are	then	marked	as	ready	for	execution.



In	a	Picture
•

Manchester	Data	Flow	Machine



Dataflow	in	Practice

However,	in	practice	the	following	problems	occurred:

– Efficiently	broadcasting	data	tokens in	a	massively	
parallel	system.

– Efficiently	dispatching	instruction	tokens in	a	massively	
parallel	system.

– Building	Content	Addressable	Memory	(Tag	Memory)	
large	enough to	hold	all	of	the	dependencies	of	a	real	
program.



Linda	Coordination	Language
• Main	usage:	in	combination	with	other	existing	languages,	

e.g.	C/Fortran,	provide	a	mean	to	link	less	expensive	desktop	
computers	together	and	combine	their	power	so	they	can	
jointly	tackle	problems.	

• A	logically	global	associative	memory,	called	a	tuplespace,	in	
which	processes	store	and	retrieve	tuples.

• This	model	is	implemented	as	a	"coordination	language"	in	
which	several	primitives operating	on	ordered	sequence	of	
typed	data	objects,	"tuples”	
– in atomically	reads	and	removes—consumes—a	tuple	from	

tuplespace
– rd non-destructively	reads	a	tuplespace
– out produces	a	tuple,	writing	it	into	tuplespace
– eval creates	new	processes	to	evaluate	tuples,	writing	the	result	

into	tuplespace



tUPL

• Free	Computer	Programming	from	common	
artifacts	like	data	structures,	data	dependencies,	
explicit	parallelism	constructs

• Harness	a	compilation	framework	such	that
– Data	structures	are	generated	automatically
– Data	dependencies	are	turned	into	opportunities	to	
optimize	performance

– Parallel	execution	is	guaranteed



Basic	tUPL Data	Type

<	token,	data >

Formally,	this	basic	data	type	is	even	further	
stripped	down	to

<	token >(A,					)

With	A the	“shared”	space	in	which	data is	stored,	and	with	FA
an	address	function	on	A,	s.t. data is	represented	as:	

A [FA(<token>)]
So	data	==	A [FA(<token>)]

FA	

812/12/17



Address	function	FA
FA can	be	any	function,	but	mostly	it	is	an	affine	
mapping/projection:

With	n	being	the	number	of	fields	in	token	and	k	the	
dimensionality	of	A.	So	FA can	be	represented	as

Zn → Zk

912/12/17



NOTE!!!!
A	[	I,	J	]	=	5.0	

does	NOTmean	that	element	[	I,	J	]	of	
Matrix	A,	or	of	a	
2-Dimensional	Array	A	

is	assigned	the	value	5.0.	

BUT:
5.0	is	stored	in	A	at	[					(I,	J	)],	with	FA =	Id,	or	that
the	data	value	of	<	I,	J	>(A,					)	becomes	5.0,	or	that
<	I,	J,	data	>	=	<	I,	J,	5.0	>*

*Note	that	tokens	can	be	more	dimensional:	token	tuples	t
In	case	tuples	have	more	than	one	field,	then	t.i represents	the	
ith field	of	t

FA

FA

1012/12/17



Multiple	Shared	Spaces	and	Associated	
Address	Function	per	Shared	Space

Consider	the	following	tUPL code	fragment:
A[I,J] = A[I-1,2*J] + B[J]

Then	in	this	code	fragment	we	have	2	shared spaces:
A and	B

and	3	address	functions:
FA1 =	Id	=									<	I,	J	>

FA2 =								+								 <	I,	J	>

FB =	 <	I,	J	>

1	0
0	1

1	0
0	2

-1
0	

0	1	
So,	for	token t	=	<I,J>	perform:
A[FA1(t)]	<- A[FA2(t)]	+	B[FB(t)]	 1112/12/17



SO,	data	structures as	we	know	them	do	not	
exists	in	tUPL,	only

single	storage	locations	for	each	data	item,	
represented	by	token	tuples

We	need	a	mean	to	express	a	collection or	set
of	these	single	storage	locations

è (Token)	Tuple	Reservoirs



Examples	of	Tuple	Reservoirs	(I)

A	Digraph	G(V,E):
T =	{	<u,v> |	u,	v ε V	and	(u,	v)	ε E	}
with	address	function	Weigth [	u,	v ] representing	the	
address	at	which	the	weight	of	edge	(u,v)	is	stored

A	Sparse	Matrix	A:
T =	{	<i,j> |	at	row	i and	column	j	

there	is	a	nnz element}
with	address	function	Value	[	i,j] representing	the	
address	at	which	the	value	of	matrix	A	[	i,	j ]	is	stored



Examples	of	Tuple	Reservoirs	(II)

A Linked	List	(of	single	storage	locations):
T =	{	<ik,jk> | 1	<=	k <=	n,

for	every	jk ,	1	<=	k <	n,	
there	exists	exactly	one	im,	
such	that	jk =	im ,	and

for	all	jk ,	1	<=	k <=	n ,	
the	values	are	different}

Together	with	an	address	function	Value	[	ik,	jk ]	
representing	the	value	at	the	kth position	in	the	list.
OR address	function	Value	[	ik]	!	(tUPL allows	both)



Examples	of	Tuple	Reservoirs	(III)

Relational	Database	Tables
T =	{	< i >|	1	<=	i <=	n,	with	i representing	

the	ith record	in	the	database	table}
and	associated	address	functions:

field1 [	i ],	field2 [	i ],	…,	fieldt [	i ]



tUPL Loop	Structures
Two	BASIC Loop	Structures:

forelem ( t; t ε T )
whilelem ( t; t ε T )

Both	structures	are	inherently	
parallel and	non-deterministic

This	means	that	any	tuple	of	T	can	be	taken	at	any	time!!

In	the	forelem structure	every	tuple	is	taken	exactly	once,	
while	in	the	whilelem every	tuple	can	be	taken	an	
arbitrary	number	of	times	(details	later)



Example	I

Sparse	Matrix-Vector	Multiplication

forelem ( t; t ε T )

{

Value_C[t.i]+= Value_A[t.i,t.j] 
* Value_B[t.j]

}



Example	II	(LU	factorization)
for (k; kεN)
{

pivot = IDX_A<i,j>[(k,k)]();
forelem (t; t ε A.<i,j>[<(k,∞),k>])
{

mult = Value[t.i,t.j]/Value[t.pivot,t.pivot];
Value[t.i,t.j] = mult;
forelem (r; r ε A.<i,j>[<t.j,(t.j,∞)>])
{

cand = NULL
forelem (q; q ε A.<i,j>[<t.i,t.j>])

cand = q;
if (cand == NULL)
{

cand = <t,i,t.j>
A = A U cand;
Value[cand.i,cand.j] = 0

}
Value[cand.i,cand.j] -= mult*Value[r.i,r.j]

}
}

}



Example	III
SORTING

whilelem ( t; t ε T )
{

if ( X[t.i] > X[t.j] )
swap ( X[t.i], X[t.j] )

}



Example	IV:	MaxFlow

whilelem ( t; t ε T )
{ if (Delta[t.u,t.v] > 0 && Remainder[t.v,t.w] > 0)

{
delta_change = min(Remainder[t.v,t.w],Delta[t.u,t.v]);
Delta[t.v,t.w]+= delta_change;
Remainder[t.v,t.w] -= delta_change;
Remainder[t.w,t.v] += delta_change;
F[t.u,t.v] += delta_change;
Delta[t.u,t.v] -= delta_change

}
if (Delta[t.u,t.v] > 0 && Remainder[t.v,t.w] == 0)
{

if (t.v == ‘s’ || t.v == ‘t’)
{

F[t.u,t.v] += Delta[t.u,t.v];
Delta[t.u,t.v] = 0

}
else
{ # Reverse Flow

Delta[t.v,t.u] += Delta[t.u,t.v];
Remainder[t.v,t.u]-= Delta[t.u,t.v];
Delta[t.u,t.v] = 0

}
}

}

T =	{	<u,v,w>	|	(u,v)	and	(v,w)	(back)edges	of	G	and	w!=u }*

*|T|	≈	(aver_out+aver_in)*(aver_out+aver_in-1)*|V|
≈	aver_out^4*|V|



tUPL Loop	Body
One	or	more	conditionally	executed	serial	codes	operating	on	data	items	
which	are	defined	by	the	tokens	from	the	Tuple	Reservoir	and	their	
associated	address	functions*,	i.e.

tUPL Loop	Body:
if ( Cond_1 )
{

Serial_Code_1 (< t >)
}
if ( Cond_2 )
{

Serial_Code_2 (< t >)
}
…
if ( Cond_n )
{

Serial_Code_n (< t >)
}

Ø All		Cond_i’s are	exclusive	for	forelem.	For whilelemmultiple	conditions	
can	be	true at	the	same	time	for	a	tuple.	

Ø n can	be	1 and	Cond_1 can	be	true.

*Except	for	local/temporary	variables	with	respect	to	the	Loop	Body



Scheduling		whilelem (t; t ε T)

ØFor	each	execution	of	a	tuple	exactly	one	of	the	
tuples	with	a	valid	conditional	serial	code	is	
chosen.

Ø If	there	are	no	tuples	left	with	a	valid	conditional	
serial	code,	then	the		whilelem loop		terminates.

ØAny	loop	scheduling	for	a	whilelem loop	must	
guarantee	that	every	tuple	with	a	valid	conditional	
serial	code	that	is	continuously	enabled	beyond	a	
certain	point	is	taken	infinitely	many	times	(cf.	just	
computation).



Scheduling		forelem (t; t ε T)

ØFor	each	execution	of	a	tuple	exactly	one	of	the	
tuples	is	chosen	with	a	valid	conditional	serial	
code	and	which	has	not	been	executed	so	far.

ØIf	there	are	no	tuples	left	with	a	valid	conditional	
serial	code,	then	the		forelem loop		terminates.

Note	that	if	the	conditions	are	not	carefully	chosen	
it	can	happen	that	the	forelem loop		terminates	
before	all	tuples	have	been	executed.



Automatic	Data	Structure	Generation	in	tUPL

tUPL Code tUPL
Intermediate

C/C++ Code

Backend	
Intermediate

CUDA Code

P
A
R
S
E
R

Materialized
Intermediate

Code	
Transformations

Materialization

Concretization

MPI Code



tUPL Intermediate
forelem ( t; t ε T )

{

… t …

}

whilelem ( t; t ε T )

{

… t …

}

forelem ( i; i ε pT )
{

… T[i] …
}
whilelem ( i; i ε pT )
{

… T[i] …
}

Ø pT and	T[i]	notation	allows	for	a	more	clear	expression	of	
the	materialization	and	concretization	phase	

Ø tUPL allows	mix	use	of	tUPL notation	and	intermediate	
notation



Some	Code	Transformations*

forelem (i; i ε pA)

… A[i]…

forelem (ii; ii ε A.field1)

forelem (i; i ε pA.field1[ii])

… A[i]…

Orthogonalization

A.field1 is	the	set	of	all	possible	field1	values	of	tuples	in	A:	{	i.field1	|	i ε A	}

Encapsulation

forelem (i; i ε pA.field1)

… …

forelem (i; i ε N10)
… …

If		A.field1 would	be	{	0,		1,	3,	4,	7,	9,	10	},	for	instance.	This	transformation	only	
makes	sense,	if	the	execution	of	the	inner	loop	for	the	other	i-value’s	results	into	a	NOP.	i.e.
C[i]	=	C[i]	+	B[i],	and	B[i]	==	0	for	2,	5,	6	and	8.	

*forelem is	used	in	the	examples	but	the	trafo’s equally	apply	to	whilelem



Some	Code	Transformations	(2)

forelem (i; i ε pA)

forelem (j; j ε pB.field_b[A[i].field_a])

… A[i].field_c … B[j].field_d …

Loop	Collapse

forelem (i; i ε pAxB.field_b[field_a])

… AxB[i].field_c … AxB[i].field_d …

AxB is	the	cross	product	of	the	two	tuple	sets	A	and	B:	{	<	i,	j	>	|	i ε A	and	j	ε B	}	



Horizontal	Iteration
Space	Reduction

Some	Code	Transformations	(3)

Loop	Interchange

forelem (i; i ε pA)

forelem (j; j ε pB)

… A[i] … B[j] …

forelem (j; j ε pB)

forelem (i; i ε pA)

… A[i] … B[j] …

forelem (i; i ε pA)

… A[i].field2 … A[i].field3 …

forelem (i; i ε pA’)

… A’[i].field2 … A’[i].field3 …

With	A’	=	{	<field2,field3>	|	<field1,field2,field3>	ε A	}



Materialization

forelem (i; i ε pA.field[X])

… A[i]…

forelem (i; i ε N*)
… PA[i]…

N* represents	the	set	{	1,	2,	…	,	|PA|	},	with	PA an	
enumeration	of	the	set:	

{	i |	i ε A	and	i.field ==	X	}	

DO	NOT	CONFUSE PA	with	a	linear	array	data	structure



Some	more	code	transformations

Tuple	Splitting

forelem (i; i ε A.field)

forelem (k; k ε pB.field[i])

… B[k].value …

forelem (i; i ε N10)
forelem (k; k ε pB.field[i])

… B[k].value …

forelem (i; i ε N10)
forelem (k; k ε N*)

… B[i][k].value …

2	dimensional	materialization	into	B[][]	necessary	because	of	outerloop dependence.

forelem (i; i ε N10)
forelem (k; k ε N*)

… B[i].value[k] …



Some	more	code	transformations	(2)	

N*	Materialization

forelem (i; i ε N10)
forelem (k; k ε N*)

… A[i][k] …

forelem (i; i ε N10)
forelem (k; k ε PA_len[i])

… A[i][k] …



Some	more	code	transformations	(3)	
Data	Localization

forelem (i; i ε pA)

… B [ A[i] ] …

forelem (i; i ε pA’)

… A’[i].field_B …

Here	the	tuples	in	reservoir	A	are	being	extended	to	include	the	data	at	address	
@B[A[i].field_k}.	So	A’	=	{	<	t,	B[t]	>	|	t	ε A	}.	By	default,	this	
transformation	is	only	allowed	for	read	only	data	at	B.



Regrouping	of	Single	Storage	Locations	(Tuples)

Regrouping	as	a	result	of	orthogonalization on	the	
first	field

X 
X XX
X  XX
XX
X



Regrouping	after	Materialization and 
Loop	Interchange

X 
X XX
X  XX
XX
X



Regrouping	after	orthogonalization on	the	second	field	
followed	by	materialization and	loop	interchange

X 
X XX
X  XX
XX
X



Concretization
forelem (i; i ε N*)

… PA[i]…

forelem (i; i ε PA_len[i])

… PA[i] …

for	(i	=	0;	i	<	PA_len;	i++)
...	PA[i]	...	



Some	Concretization	Steps
tUPLE loop	construct Concretization
forelem (i; i ε pA)

… A[i]…
Linked	list of	struct’s

forelem (i; i ε N10)
… A[i]…

An	array	of	struct’s

forelem (i; i ε N10)
forelem (k; k ε PA_len[i])

… A[i][k] …

An	array of	arrays	of	struct’s

forelem (i; i ε N10)
forelem (k; k ε PA_len[i])

… A[i][k].value …

An	array	of	arrays	of	struct’s

forelem (i; i ε N10)
forelem (k; k ε PA_len[i])

… A[i].value[k] …

An	array	of	arrays	of	values



Example
forelem (i;iε pA)

… B[A[i]]…

forelem (i;iε PA’_len)

… PA’[i].field_B …

forelem (i;iε pA’)

… A’[i].field_B …

forelem (i;iε pA’_len)

… PA’.field_B[i]…

A	linked	list	of	struct’s:	A	+
A	multidimensional	array:	B

An	linked	list	of	struct’s:	A	

An	array	of	struct’s A’

Several	Arrays	for	each	field	
of	A’

Just	one	array	of	field_B
values

forelem (i;iε pA’_len)

… PA’.field_B[i]…

Materialization

Data	Localization

Tuple	Splitting

Horizontal	Iteration	Space	Reduction



The	Transformation	Search	Space	for	SpMxM





Algorithmic	Optimization
• tUPL will	automatically	choose	sequences	of	valid	
serial	codes	to	be	executed	one	after	the	other,	so	that	
their	execution	is	being	optimized.

• So,	next	to	the	automatic	generation	of	data	structures	
tUPL will	also	automatically	optimize	and	change	the	
order	in	which	operations	are	performed	and	by	doing	
so	will	change	the	actual	algorithm	being	used	to	
compute	the	results.

• These	sequences	are	being	identified	as	chains of	pairs	
of	tuples	and	serial	codes:	

(	tk,	Serial_Code_i )*
representing

Serial_Code_i (< tk >)
*Note	that	Cond_i has	to	evaluate	to	true	for	every	tk



Recap
tUPL Loop	Body:

if ( Cond_1 )
{

Serial_Code_1 (< t >)
}
if ( Cond_2 )
{

Serial_Code_2 (< t >)
}
…
if ( Cond_n )
{

Serial_Code_n (< t >)
}



Different	kind	of	chains
• Mono	Chains	(MC),	every	element	in	the	chain	
has	the	same	serial	code:

(	t1,	Serial_Code_i ),	(	t2,	Serial_Code_i ),	…	

• Two	Typed	Chains:
– Alternating	Chains	(AC),	consecutive	elements	in	the	
chain	alternate	between	Serial_Code_i and	
Serial_Code_j

– Cascading	Chains	(CC),	first	part	of	the	chain	uses	
Serial_Code_i the	second	part	of	the	chain	uses	
Serial_Code_j

(	t1,	Serial_Code_i ),	(	t2,	Serial_Code_i ),	…,
(	tk,	Serial_Code_j ),	(	tk+1,	Serial_Code_j ),	…

• Hybrid	Chains	(HC)



Profitable	Chain

A	chain	C	is	profitable* iff
ØThe	consecutive	execution	of	the	elements	in	
C	can	be	optimized	such	that	the	execution	
time	of	the	whole	chain	is	less	than	the	sum	of	
the	execution	times	of	the	individual	elements

ØAND	the	chain	is	minimal in	such	a	way	that	
the	chain	C	cannot	be	broken	into	smaller	
chains	C1 and	C2	such	that	C	=	C1 ||	C2 and

Exec	(C)	=	Exec	(C1)	+	Exec	(C2)
*	C	is	being	referred	to	as	a	profit	chain



Main	Theorem	I

For	every	profit	chain	C:	
all	consecutive	elements	in	C:	

(t1,	Serial_Code_i),	(t2,	Serial_Code_j)	

have	a	data	dependence	on	an	address	function	
A	used	in	both	serial	codes:	Serial_Code_i,
Serial_Code_j,	i.e.

@A[t1] ==	@A[t2]



Profit	Chains	in	SpMxV

forelem ( t; t ε T )
{

Value_C[t.i]+= Value_A[t.i,t.j] 
* Value_B[t.j]

}

(<1,1>, Serial_Code_1),	(<1,2>, Serial_Code_1),	…	
can	be	optimized	such	that	subsequent	reads	of	
Value_C[t.i] are	eliminated.	So	these	chains	are	
identified	as	profit	chains.

In	fact,	the	orthogonalization code	optimization	is	a	
direct	result	of	this	chaining



Covering	Chain	Set	
A	covering	chain	set	CCS is	a	set	of	Chains	Ci
such	that	for	every	tuple	(	tk,	Serial_Code_i )	
there	is	an	i such	that	

(	tk,	Serial_Code_i )	ε Ci

Note	that	if	the	possible	set	of	profit	chains	is	
not	covering	then	this	set	can	be	completed	
with	single	(non-profit)	chains,	consisting	out	of	
the	(	tk,	Serial_Code_i )	pairs	which	were	not	
covered,	to	obtain	a	covering	chain	set.	



Main	Theorem	II
If	

whilelem ( t; t ε T )

is	just	scheduled,	then	if
whilelem ( C; C ε CCS )
forelem ( t; t ε C )

is	also	just	scheduled,	then	both	loop	structures	are	
semantically	equivalent.



forelem ( t; t ε T )

and

forelem ( C; C ε CCS )
forelem ( t; t ε C )

are	semantically	equivalent	just	based	on	the	
covering	property	of	CCS.



Examples	of	profit	chains	I
whilelem ( t; t ε T )

{
if ( X[t.i] > X[t.j] )

swap ( X[t.i], X[t.j] )
}

(<1,2>, Serial_Code_1),	
(<2,3>, Serial_Code_1),	
(<3,4>, Serial_Code_1),…,	(<n-1,n>, Serial_Code_1)
with	X[1]>X[2],	X[2]>X[3],	etc,	results	in	a	sequence	of	n	swaps,	
whereas	it	can	be	optimized	by	executing	just	one	insert!!!



Examples	of	profit	chains	II
whilelem ( t; t ε T )

{ if (Delta[t.u,t.v] > 0 && Remainder[t.v,t.w] > 0)
{

delta_change = min(Remainder[t.v,t.w],Delta[t.u,t.v]);
Delta[t.v,t.w]+= delta_change;
Remainder[t.v,t.w] -= delta_change;
Remainder[t.w,t.v] += delta_change;
F[t.u,t.v] += delta_change;
Delta[t.u,t.v] -= delta_change

}
if (Delta[t.u,t.v] > 0 && Remainder[t.v,t.w] == 0)
{

…
else
{ # Reverse Flow

Delta[t.v,t.u] += Delta[t.u,t.v];
Remainder[t.v,t.u]-= Delta[t.u,t.v];
Delta[t.u,t.v] = 0

}
}

} 

Serial_Code_1

Serial_Code_2



Then	(<s,4,6>,Serial_Code_1),	(<4,6,52>,	
Serial_Code_1),…,(<100,105,107>,	Serial_Code_1),	(<105,	107,111>,	
Serial_Code_2),	(<111,107,	105>,	Serial_Code_1),	…	(<6,4,s>,	
Serial_Code_1) with	Remainder[4,6]>0, with	
Remainder[6,52]>0,… etc. ,	and
Remainder[107,111]==0 is	a	profit	chain.

As	well	as

(<s,4,6>,Serial_Code_1),	(<4,6,52>,	
Serial_Code_1),…,(<100,105,107>,	Serial_Code_1),	(<105,	107,	t>,	
Serial_Code_1),	with	Remainder[4,6]>0, with	
Remainder[6,52]>0,… etc.

Note	that	the	latter	profit	chain	is	in	fact	the	augmented	
path as	defined	by	Ford	and	Fulkerson!!!



Parallel	Programming	II	(this	spring)

• tUPL will	automatically	choose	sequences	of	valid	
serial	codes	to	be	executed	one	after	the	other,	
so	that	their	execution	is	being	optimized.

• So,	next	to	the	automatic	generation	of	data	
structures	tUPL will	also	automatically	optimize	
and	change	the	order	in	which	operations	are	
performed and	by	doing	so	will	change	the	actual	
algorithm	being	used	to	compute	the	results.

• In	fact	within	tUPL new	algorithms	can	be	
automatically	generated which	will	not	only	
execute	in	parallel	but	will	also	be	adaptive	to	the
underlying	problem	to	be	solved.



END	OF	COURSE


