Parallel Programming 2016, Assignment 3

Deadline: Friday, December 30 before 23:59 hours.

For the completion of assignment 3 a choice is given to either design a parallel version of the first
assignment, i.e. Sparse LU factorization with Partial Pivoting or to develop a Parallel Sorting
algorithm.

1 Parallel Implementation of Sparse LU Factorization

This task concerns the implementation of Parallel Sparse LU Factorization. After completing
and testing your implementation, you will perform a thorough experimental evaluation of your
implementation.

The assignment has to be completed individually. You are expected to hand in a tarball
containing your source code and an extensive report in PDF format that describes your imple-
mentation and contains a thorough experimental evaluation. The assignments can be handed in
by e-mail to ppi2016 (at) handin (dot) liacs (dot) nl.

1.1 Implementation

Your algorithm needs to be implemented in the C/C++ language, using MPI for interprocess
communication. The target platform is the DAS-4 cluster. Also for this assignment, parallelization
is only to be done by distributing the work over different nodes. So, we assume that only a single
process, without threading, is executed on each node of the DAS-4 cluster.

You need to implement a Parallel Sparse LU Factorization kernel that applies partial pivoting.
Parallelization must be carried out using the MPI framework. You can assume that only one
process will be running per node, so within your parallelized program you do not have to account
for multiple processes that execute within the same address space (threading). The program must
be written in C/C++.

Describe in your report how you have parallelized the LU Factorization kernel and how you
solved the problems you encountered.

1.2 Experimental Evaluation

The final part of the assignment is to perform a thorough experimental evaluation of your imple-
mentation. The target machine will be the DAS-4 cluster at Leiden University. To be benchmarked
are the execution time required to factorize the system, the total time to compute all five solu-

tion vectors, and the relative errors Hﬁ;"'l‘ for each solution. ||z|| denotes the Euclidean Norm:

V> x? and x is the actual solution and Z is the solution computed by your implementation of
LU factorization. Think about what you want to show and how you need to show this: so, what
experiments do you need to carry out. Examples are: performance / execution time, and amount
of communication between nodes.

As test data, you can again use matrices from the University of Florida Sparse Matrix Collec-
tion (http://www.cise.ufl.edu/research/sparse/matrices/). We selected the following test
matrices:

Simon/raefsky6
Garon/garonl
Grund/poli4

Schenk IBMNA /c-25
Bai/cryg10000

For the initialization of your program you need to construct five b vectors which are obtained
by multiplying a given matrix A with an actual solution vector z (so, b = Ax). Take for = the
following vectors:

e vector x consisting of all ones.

e vector x consisting of 0.1 for every element.

e vector x consisting of alternating +1, —1 values: +1,—-1,+1,—1,+1,—1,....
e vector x consisting of alternating +5, —5 values.

e vector x consisting of alternating +100, —100 values.

Note that the initialization is not part of the actual computation, so does not need to be bench-
marked. A standard matrix multiplication or an external tool like Python with Scipy may be used
to compute the b vectors.

2 Parallel Sorting

This task concerns the implementation of a parallel sorting algorithm. The (starting) sequential
sorting algorithm which should be used is not specified and can be chosen to be any sorting
algorithm you can think of. The final implementation of the parallelized sorting algorithm should
be run on the DAS-4 cluster in Leiden. The data set to be sorted will be generated at run-time
on the separate compute nodes.

The assignment has to be completed individually. We expect you to submit a tarball containing
your source code and a report (PDF format) which describes your parallel sorting algorithm and
the benchmark results for each combination of the data sets and the nodes. The assignments can
be handed in by e-mail to ppi2016 (at) handin (dot) liacs (dot) nl.

2.1 Implementation

Your algorithm needs to be implemented in the C/C++ language, using MPI for interprocess
communication. The target platform is the DAS-4 cluster. Also for this assignment, parallelization
is only to be done by distributing the work over different nodes. So, we assume that only a single
process, without threading, is executed on each node of the DAS-4 cluster.

The data to be sorted consists of 32-bit integers, which will be generated at run-time on the
separate compute nodes. By using a pseudo-random number generator and a fixed seed, we can
ensure that the same data is generated for subsequent runs, which facilitates debugging and makes
for a fair performance comparison. The following code fragment sets a random seed and fills an
array with pseudo-random numbers:

#include <stdlib.h>

#define N 200000UL
#define BASE_SEED 0x1234abcd

int *my_array = malloc(sizeof (int) * N);
int rank = 0;

/* Initialize the random number generator for the given BASE_SEED
* plus an offset for the MPI rank of the node, such that on every
* node different numbers are generated.

*/
srand (BASE_SEED+rank) ;

/* Generate N pseudo-random integers in the interval [0, RAND_MAX] */

for (size_t i = 0; i < N; i++)
my_array[i] = rand();

free(my_array) ;

A quick experiment has shown that a DAS-4 node can generate between 70 and 80 million 32-bit
integers per second (single-threaded). 37 GB of numbers can be generated in little over 2 minutes.

The result of the sorting algorithm, the ordered array, should not be printed in its entirety.
Instead, only print the numbers at subscripts 0, 10000, 20000, 30000, ... to the standard output.
Next to that, print the time it took the algorithm to perform the sorting (important: exclude the
time it took to generate the arrays with random numbers).

2.2 Benchmarking

You should perform experiments with 1, 2, 4, 8 and 16 nodes on the DAS-4 cluster located in
Leiden. Each experiment should be repeated five times, with five different data sets of the same
size. The run times that are presented in the report should be averages of these five runs.

The five different data sets will be generated by choosing five different (base) seeds to initialize
the random number generator. The following seeds should be used:

0x1234abcd, 0x10203040, 0x40e8c724, 0x79cbbald, Oxac7bd459
The total sizes of the data sets should be:

200.000 32-bit integers
1.600.000 32-bit integers
80.000.000 32-bit integers
16.000.000.000 32-bit integers

resulting in a data set size per node (N) with P (1, 2, 4, 8 or 16) nodes of:

200.000/ P 32-bit integers : (200.000, 100.000, 50.000, 25.000, 12.500)
1.600.000/ P 32-bit integers : (1.600.000, 800.000, 400.000, 200.000, 100.000)
80.000.000/ P 32-bit integers : (80.000.000, 40.000.000, 20.000.000, 10.000.000, 5.000.000)
16.000.000.000/ P 32-bit integers : (16.000.000.000, 8.000.000.000, 4.000.000.000,
2.000.000.000, 1.000.000.000)

Note that with the largest data set, performing experiments on a single node is really pushing
the available swap space. Depending on the efficiency of your implementation, the largest data
set might not run on a single node. In that case, for the largest data set you should start the
benchmarks on 2 nodes, followed by 4, 8 and 16 nodes.

