Parallel Programming I (Fall 2016, Prof.dr. H. Wijshoff)

Four parts:

- Introduction to Parallel Programming and Parallel Architectures (partly based on slides from Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar accompanying `Introduction to Parallel Computing", Addison Wesley, 2003.)
- Parallel Algorithms
 - Parallel Algorithm Design
 - Parallel Numerical Computing
 - Parallel Graph Computing
 - Parallel Sorting
- Existing Programming Paradigms
- New Programming Paradigms

Lab/Homework/Assignments

During the course of the semester, programming assignments.

These assignments make for 40% of the total load.

Open "book" final exam will make up for remainder 60%.

A Long History

- The advent of parallel computing dates back to the fifties of the last century
 - IBM introduced the 704 (full parallel floating point arithmetic) in 1954, through a project in which Gene Amdahl was one of the principal architects.
 - In April 1958, Stanley Gill (Ferranti Ltd, inventor of the subroutine) discussed parallel programming and the need for branching and waiting.
 - Also in 1958, IBM researchers John Cocke and Daniel Slotnick discussed the use of parallelism in numerical calculations for the first time.
- In 1969, US company Honeywelll introduced its first Multics system, a symmetric multiprocessor system capable of running up to eight processors in parallel.
- The ILLIAC IV (1971) was one of the first attempts to build a
 massively parallel computer. One of a series of research machines
 (the ILLIACs from the University of Illinois), the ILLIAC IV design
 featured fairly high parallelism with up to 256 processors.

Milestones (the race to the bottom)

```
1972: First Supercomputer: CRAY 1
      1 \text{ MFLOP} = 1 000 000 \text{ operaties/sec.}
1989: CRAY YMP
      1 GFLOP = 1 000 000 000 operaties/sec.
1996: ASCI red (Intel based parallel processor)
      1 TFLOP = 1 000 000 000 000 oper./sec.
2008: IBM Roadrunner
      1 PFLOP = 1 000 000 000 000 000 oper./sec.
In Nov. 2014:
  NUDT (China): 54.9 PFLOP (0.054 EXAFLOP)
       54 900 000 000 000 000 oper./sec. achieved by
           3 120 000 cores using up to 18 MW
```

Liquid Cooled Cray 2

In Do	ecember 2014 (http://top5	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)		
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
6	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
7	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510
8	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	458,752	5,008.9	5,872.0	2,301

- 1	
•	•
	•
	1
•	_
-	
	L.
	-
•	c/2015/1
	•
-	
•	
	$\overline{}$
	"
	Y
	-
	-
	<u>U</u>
	. —
	_
	חבים/
	7
	•
	L
	•
	_
	_
- (
	5
-	
- 1	Ò
	Ц.
	-
	_
	_
	_
•	=
•	-
•	
•	<u> </u>
•	<u> </u>
	<u> </u>
	\ + 2
	110
	\.
	/p#p./
	2 (http://
	12 (http://
	15 /http://
	/ Lutto /
	145 http://
	0457 (http://
	//
	2015 /http://
	2015 (http://
	- 2015 /http://
	1 201 に / トサロ・
	or 2015 (http://
	or 2015 (http://
	Jor 2015 (http://
	00r 2015 (http://
	her 2015 (http://
	14 July 15 (http://
	nhar 2015 (http://
	mhar 2015 (http://
	100 mper 2015 (http://
	ombor 2015 /http://
	Jampar 2015 (http://
	Vember 2015 (http://
	vember 2015 (http://
	// http://
•	0.vember 2015 /httn://
•	Jovember 2015 (http://
•	November 2015 (http://
•	November 2015 (http://
•	November 2015 /http://
	f November 2015 (http://
•	of November 2015 (http://
•	of November 2015 (http://
•	of November 2015 (http://
•	of November 2015 (http://
•	of November 2015 (http://
•	s of November 2015 (http://
•	Ovember

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
6	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	301,056	8,100.9	11,078.9	
7	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
8	HLRS - Höchstleistungsrechenzentrum Stuttgart Germany	Hazel Hen - Cray XC40, Xeon E5-2680v3 12C 2.5GHz, Aries interconnect Cray Inc.	185,088	5,640.2	7,403.5	
9	King Abdullah University of Science and Technology Saudi Arabia	Shaheen II - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	196,608	5,537.0	7,235.2	2,834
10	Texas Advanced Computing Center/Univ. of Texas United States	Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz, Infiniband FDR, Intel Xeon Phi SE10P Dell	462,462	5,168.1	8,520.1	4,510

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
3	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
4	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
5	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
6	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
7	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	301,056	8,100.9	11,078.9	
8	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Cray Inc.	115,984	6,271.0	7,788.9	2,325
9	HLRS - Höchstleistungsrechenzentrum Stuttgart Germany	Hazel Hen - Cray XC40, Xeon E5-2680v3 12C 2.5GHz, Aries interconnect Cray Inc.	185,088	5,640.2	7,403.5	
10	King Abdullah University of Science and Technology Saudi Arabia	Shaheen II - Cray XC40, Xeon E5-2698v3 16C 2.3GHz, Aries interconnect Cray Inc.	196,608	5,537.0	7,235.2	2,834

In Fact

Press Release June 2016:

China maintained its No. 1 ranking on the 47th edition of the TOP500 list of the world's top supercomputers, but with a new system built entirely using processors designed and made in China. Sunway TaihuLight is the new No. 1 system with 93 petaflop/s (quadrillions of calculations per second) on the LINPACK benchmark.

What does 18 MW mean?

Country	Population	Power per capita (W/p)*	18 MW equivalent in people
China	1.360.000.000	458	39.000
United States	318.000.000	1683	11.000
European Union	504.000.000	688	26.000
India	1.243.000.000	101	178.000
Netherlands	17.000.000	764	24.000
Syria	22.000.000	147	122.000
Afghanistan	30.000.000	1	18.000.000

^{*} Taken from https://en.wikipedia.org/wiki/List_of_countries_by_electricity_consumption

What does 1 PFLOP mean?

Multiplying 2 numbers with 15 decimals

- Paper and Pencil: 1 per 4 minutes
- Calculator: 10 per minute (based on 300 cpm (character per minute) (750 cpm world champion, Guinness, 2014))
- World Population of 6 000 000 000 (6*10⁹), gives a speed of 60 000 000 000 per minute by calculators, which is equivalent to 60 GFLOPS

1 PFLOP is 1000/60 = 17 faster!
(And 1 ExaFLOP is 17000 faster!!!)

WHY do we need to compute at these rates?

Exponential growth of computational complexity

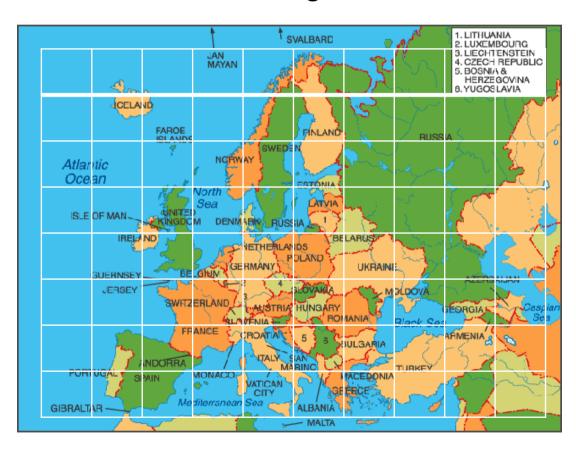
(Easy) example: CHESS

- Assume an average of 10 possible moves per turn
- Average chess match: 80 turns

```
So 10^80 different possible outcomes
```

With 1 PFLOP: 10^65 sec =

 $4x10^{57}$ years =


 $4x10^54$ centuries =

10⁴⁸ x the existence of the universe

WHY (II)

Large Scale of computations

Example: Weather Forecasting

Computation (Simulation)

- For each grid point the interaction with its neighbor gridpoints are computed with respect to temperature, air pressure, moisture, etc
- Europe's surface: 5 700 000 km²
- Air heigth: 10 km
- With a 1m x 1m x 1m grid this results in:
 57 000 000 000 000 000 = 5.7 x 10¹6 grid points

Computation (II)

Several operations per grid point:

Assume for each second and for 5 variables,

then for a prediction of **12 hours**:

 $5 \times 12 \times 60 \times 60 = 216\,000$ operations per grid point

With a 1 PFLOP computer this takes:

5.7 x 10¹6 X 216 x 10³ / 10¹5=

 $12 \times 10^2 1 / 10^1 = 12 \times 10^6 \text{ sec.} = 12 \times 10^6 \text{ sec.}$

3333 hours = **138 days** !!!!!!!!!

For a 1mm x 1mm x 1mm grid:

10⁹ x 138 days = 380.000 centuries compute time required at 1 PFLOP rate for a 12 hours forecast

HPC Grand Challenges

"A Research and Development Strategy for High Performance Computing", Executive Office of the President, Office of Science and Technology Policy, November 20, 1987

- Prediction of <u>weather</u>, <u>climate</u>, and <u>global change</u>
- Challenges in materials sciences
- <u>Semiconductor</u> design
- Superconductivity
- Structural biology
- Design of <u>pharmaceutical</u> drugs .
- Human genome
- Quantum chromodynamics
- Astronomy
- Challenges in <u>Transportation</u>

- Vehicle Signature
- Turbulence
- Vehicle <u>dynamics</u>
- Nuclear fusion
- Efficiency of <u>combustion</u> systems
- Enhanced oil and gas recovery
- Computational <u>ocean sciences</u>
- Speech
- Vision
- Undersea surveillance for anti-submarine warfare

Recently this list of applications was enlarged significantly

Next to applications in engineering and design, we have

- Scientific Applications: structural characterization of genes and proteins, new materials: understanding chemical pathways, bio-informatics and astrophysics, etc
- Commercial Applications: servers for large scale web servers (google, facebook, etc.), trading systems, etc.
- Applications in Computer Systems (the Internet itself): intrusion detection, cryptography, etc.
- Applications for social networks: online data mining,...
- Data Mining at large