
Computer Networks, Spring 2021 Assignment 2:

Audio Streaming Protocol

Deadlines: Friday April 9, 2021
Friday May 21, 2021

1 Introduction

Just imagine you live in a world where a strange virus is spreading. The governments of the world
tell the people to stay at home and no longer visit each other until the spreading of the virus has
been stopped.

Little did everyone know, the virus is not easy to contain, and the people have not been able
to visit friends for a long time now. Everyone becomes more and more bored, being separated
from their friends for so long.

It was then when it came to your mind: An audio streaming service would help the people of
this world! Everyone would be able to stream their favourite music and recordings to friends,
making everyone happy once more!

Eagerly, you started working on the design of a streaming protocol.

1.1 Formal Introduction

In this assignment, you will design an Audio Streaming Protocol and implement it on the UDP/IP
stack. The program must be written in C. You can make use of the skeleton code that is avail-
able from the course website (https://liacs.leidenuniv.nl/~wijshoffhag/NETWERKEN2021/).
Teams of two people are allowed.

The program consists of a server and client program. The server reads the audio file (a .wav

file), and streams it to the client (when it is connected).
During this assignment, you are encouraged to create your own .wav files to use for testing. We
explain how to create your own .wav file in Section A.4. Finally, you are encouraged to form a
team and not do this assignment alone, because it is a lot of work for a single person.

2 Installation

For this project, we use the ALSA audio driver to play audio. The ALSA drivers only exists for
Linux distributions, where they are installed by default. This means that you must have a Linux
machine. If you have a Linux machine around, please use that.

If you do not have a Linux machine, you can either install Linux on a device you have, or, you can
install a Virtual Machine Manager on your current device, and then run a Linux (e.g. Ubuntu)
VM.
In previous years, students tried to solve this problem using their own solutions.

Here is a list of things that actually do work:

• Install Linux on a machine and work with that.

• Install a Virtual Machine Manager on your current device, and then run a Linux (e.g.
Ubuntu) VM.

Here is a list of things that will not work:

• Windows ‘WSL’ Subsystem.

• Ubuntu on Windows (a collaboration to make an Ubuntu-like environment run on Windows).

• Ubuntu Terminal on Windows.

• Using a MacOS distribution.

If you have no machine running Linux, and you do not know how/want to install Linux or run a
Linux VM, then find a partner who has a Linux machine.

1

https://liacs.leidenuniv.nl/~wijshoffhag/NETWERKEN2021/

3 Implementation

Here, we explain what your implementations should be capable of. We separately address base
requirements, report requirements, code quality requirements, and bonuses you may obtain.

3.1 Base

Your program has to satisfy all of the base requirements explained here to be able to get a full
mark.
The basic program requirements are:

1. You need to build a client and a server application.

2. The programs must work on a standard Ubuntu 18.04 (or newer) OS. In theory, if you get
it to work on that OS, it should work on University machines when grading as well.

3. The programs must be able to communicate over UDP/IP, by default using ports 1234 and/or
1235.

4. Your server program should be able to read a WAVE file in CD quality (Stereo, 44.1kHz,
16-bit) provided by the user as a command line argument.

5. The client program has to play audio through the ALSA API.

6. The programs must be built using a Makefile, which you add in your submission files. The
makefile must have a clean target, which cleans up object files and executables.

7. The client program should, when first connected, fill a buffer with the first part of the audio.
This allows for smooth streaming. The size of the buffer should have a sensible default, and
it must be configurable with a commandline argument.

8. The client program has to give some indication of how far we are in the played audio. For
example, a client program can print how many percents of the audio file has been played
until now.

9. For both server and client programs, you must write a documentation file in a plain text
format (.txt, .md). The documents should describe all of the below:

(a) how to build and use the server/client program (e.g. make command, commandline
arguments)

(b) describe any significant choices you made in the implementation (e.g. the behaviour of
the quality selection, error handling)

(c) anything you want to bring under attention (which may affect your grade)

Please note that using .md files is explicitly permitted. Should you decide to use .md, know
that both Markdown-style tables and an ASCII-diagram inside a multiline-code block are
accepted.

Additionally, functional requirements are:

1. Your program should be able to simulate an unreliable connection. A commandline argument
should be available to enable this simulation. The simulation must include all of the below:

(a) Randomly dropped packages on the receiving end.

(b) Randomly swapped packages before sending on the sending end.

(c) Random delay times, with configurable min and max delay time (in milliseconds).

2. Your program has to implement 5 quality levels (min quality= 1, max= 5). While streaming,
your program should continually check whether the connection is reliable enough and, if
necessary, adjust its quality level accordingly. So, if the connection is not reliable enough for
the current quality level, the quality should be decreased. If the connection is stable enough,
the quality should be increased. When the connection is unreliable, you will have to decrease
the amount/quality of data you send. See Section A.5.

All of the above requirements have to be satisfied.

2

3.2 Report

We also expect a report (.pdf). In the report, you are to provide:

1. a short introduction.

2. implementation details. You are required to write down the following:

• Explain what sort of protocol you made. Is it a burst-protocol, or a sliding window
protocol, or something else?

• Give a RFC 768 packet definition for your packets (see Section A.1).

• Explain the communication between the client and server. For example, explain how
the client asks the server for data, and how the server responds.

• Explain how you detect faulty/lost/out-of-order packets, and how your protocol fixes
these problems.

• Explain what each quality level does: (e.g. “with quality=1 we reduce sample size from
16 to 8 bits and downsample to 50% of the frames. With quality=2...”)

3. a conclusion (short/long depending on how much you have to tell).

Of course, add any additional interesting content in your report.
Should you be interested in a bonus, do some interesting experiments with your framework and
make a ‘Results’- or ‘Evaluation’ Section. For more details about the experiments you have to
conduct for this bonus, see Section 3.4 below.

3.3 Code Quality

To ensure we get programs of decent quality, we impose a few quality requirements on all imple-
mentations. Here we list quality requirements we expect from students:

• Implementations have to compile without any warnings and errors.

• Implementations should adhere to one style only.

• There should be no memory leaks caused by your programs. Note: ALSA internal memory
is always considered to be leaked, because ALSA is a driver, and the driver does not stop
running when our program finishes. Of course, we will ignore these detected leaks.

• Implementations cannot have huge functions. We define a function as huge when it has
approximately 50 to 55 statements (= 50 to 55 lines of code in most styles). We prohibit
this, because that kind of function quite commonly is a unreadable blur of code that performs
way too much work.

• The purpose of ‘non-trivial’ functions need to be explained by using a documentation com-
ment above said functions.

In common: Pay attention to good style- and coding practices when programming for this
assignment, and try to create code as beautiful as possible.

3.4 Bonuses

For this assignment, we have the following bonuses, which bring extra points once implemented.
Note that your grade is at most 10.0. Finally, note that we only apply bonuses when the base
grade (the one before applying bonuses) is at least 5.5.

1.0 pt Implement the server program such that it can stream to multiple clients simultaneously.
Clients can join and leave the server at any point, and there is no maximum on the number
of clients that can connect to your server.

0.5 pt Perform all of the following experiments with your implementation, and add them in your
report:

– What is the average network transfer speed of your implementation in MiB/s?

– Does speed vary if you run server and client programs on different physical machines?
(If you can only work on 1 machine, come up with a different experiment.)

– Come up with one other experiment, preferably something you can plot.

3

4 Grading

Here, we publish the way we grade implementations for your benefit. Implementations can get a
total of 10.0 points normally, and there are 1.5 bonus points available. Each section starts with
the number of points you can get. Your grade is computed as Grade = min(points, 10.0).

Code Implementation - 3.0 points How well your implementation satisfies the base require-
ments, as given in Section 3.1. This includes simulation of unreliable connections, downsam-
pling/bitreduction implementations, etcetera.

Report - 2.0 points Import things are:

• Short introduction.

• Implementation section, containing explanations of what you did (and of course why and
how you did it).

• Experiments? See the bonuses Section, Section 3.4. Note you don’t have to do them to get
2.0 points here, as it is a bonus.

• Conclusion (short/long depending on how much you have to tell).

For more information, see Section 3.2.

Code Quality - 3.0 points Important things here are:

• Code readability (no huge functions, correct usage of types).

• Consistent style.

• Usage of structs and enums, and const, static, inline keywords.

• Shared code between server and client.

• No magic numbers/chars (use defines).

• Useful comments (e.g. so it is clear what each function does).

For more information, see Section 3.3.

Protocol Definition - 2.0 points Important things are:

• Well-definedness (aka clear, no ambiguous stuff).

• Robustness (aka TA cannot find a way to make your protocol fail).

• Good documentation of protocol.

5 Submission

Due to the size of this assignment, we split the deadline in two parts.

5.1 Part one

Part one is due on Friday April 9, 2021. For part one, we expect a preliminary version of
your implementation. This preliminary version should include at least a working server-client
communication and a version of your protocol definition. Submit this preliminary version by e-mail
to s.f.alvarez.rodriguez@umail.leidenuniv.nl, make sure the subject is equal to “[CN] Assignment
2 preliminary” and include your names and student numbers in the e-mail.

4

5.2 Part two

Part two is due on Friday May 21, 2021. You need to send a working version of your im-
plementation, written in C, together with a Makefile and a text file (.txt, .md) containing the
documentation of your protocol and programs. You may work in teams of at most 2 students.
Ensure that you mention your names and student numbers in your report. Submit your work by
e-mail to s.f.alvarez.rodriguez@umail.leidenuniv.nl, make sure the subject is equal to “[CN] As-
signment 2 final” and include your names and student numbers in the e-mail. Please send e-mail
attachments. Using online services like Google Drive or Drop-Box links are not accepted. If you
find your zip is too large (larger than 10MB for most mail clients), you should (1) perform make

clean if you still have object files/executables, and (2) Remove some/all .wav files.

5.3 Final Words

For late submissions, we subtract 1 point from your grade (so out of 10 points) per day.

A Appendix

A.1 RFC 768 Packet Definition & Documentation

When designing your Audio Streaming Protocol, you will decide the ‘header layout’ of one or more
packet types. By agreeing on a header layout, both server and client know how to read incoming
bytes from remote machines.

To document this layout, you have to follow the RFC 7681 standard. Simply put, your proto-
col should be documented, with the header format in an ASCII-diagram and the values of all the
fields explained. Here is an example of an ASCII-diagram for the definition of the UDP protocol
(excerpt from RFC 768):

0 7 8 15 16 23 24 31

+--------+--------+--------+--------+

| Source | Destination |

| Port | Port |

+--------+--------+--------+--------+

| | |

| Length | Checksum |

+--------+--------+--------+--------+

|

| data octets ...

+---------------- ...

A.2 Sockets

For the communication between client and server, you can use the Socket API. To get an overview
of the available system calls, you can read this Introduction to the Socket API2. Also, the Linux
manpages offer a lot of information. You can find some examples of client-server programs at
thegeekstuff.com3, abc.se4, pacificsimplicity.ca5 and many more sites.

A.3 ALSA Framework

For this assignment, you will use the ALSA PCM (Pulse-Code Modulation) interface6 to play the
audio on the client computer. After setting up the parameters of the output with snd pcm set params(...),
you can directly write samples to its buffer. The parameters you can choose include the sample

1https://tools.ietf.org/html/rfc768
2http://phoenix.goucher.edu/~kelliher/cs43/mar19.html
3https://www.thegeekstuff.com/2011/12/c-socket-programming/
4https://www.abc.se/~m6695/udp.html
5https://www.pacificsimplicity.ca/blog/c-udp-client-and-server-example
6https://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html

5

https://tools.ietf.org/html/rfc768
http://phoenix.goucher.edu/~kelliher/cs43/mar19.html
https://www.thegeekstuff.com/2011/12/c-socket-programming/
https://www.abc.se/~m6695/udp.html
https://www.pacificsimplicity.ca/blog/c-udp-client-and-server-example
https://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html
https://tools.ietf.org/html/rfc768
http://phoenix.goucher.edu/~kelliher/cs43/mar19.html
https://www.thegeekstuff.com/2011/12/c-socket-programming/
https://www.abc.se/~m6695/udp.html
https://www.pacificsimplicity.ca/blog/c-udp-client-and-server-example
https://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html

format, the channel count and layout and the sample rate. The channel layout describes where
the samples for the different channels can be found in the buffer. Either the samples are

interleaved: for each frame (time step) the samples directly follow each other;

or they are

non-interleaved: each channel has an own region in the buffer and the samples for that channel
follow each other directly in that region.

In the skeleton code, some sample parameters are used, but you can change these to fit your im-
plementation. This website explaining common ALSA terminology7 can be useful.

Note: ALSA is a Linux-only audio driver, meaning: Your client must run on a Linux OS. See
Section 2.

A.4 The WAVE Format

A WAVE file is a simple audio file format consisting of a header and a data part of samples. A
description of the header can be found here8. Code to read WAVE files is included in the skeleton
code.

A.4.1 Sending your own music

This assignment is more fun if you can send and receive your favorite music. Here are the steps to
get your favorite music in a WAV file, which the skeleton code can read and play:

1. Find some music you like with length between 5 seconds and 30 minutes.

2. Get it on your computer as mp3 file.

3. Open that file in Audacity (a free audio editor tool, available on all major platforms). Just
start Audacity, click on with file > open..., navigate to your file.

4. In Audacity, go to file > export > export as wav.

5. Set the type to WAV (Microsoft) signed 16-bit PCM, pick a folder and press. save

6. In the “Edit metadata tags”, press “clear”, then “OK”.

Now, you have suitable WAV file to send over the network!

The reason not every WAV file works out of the box is: A WAV file consists of 1 header, fol-
lowed by music data. The more tags, categories, and other meta information you store, the larger
the header becomes. This results in shifted music data. The framework is simple, and expects the
WAV header to not contain any meta information. This is why you have to strip this information
with Audacity.
Also, the framework handles only WAV files which are stereo channel, PCM-encoded, at 44100kHz.

A.5 Quality

For the quality selection, you should implement compression. Two recommended ways of (lossy)
compressing audio streams are downsampling and bit reduction

A.5.1 Downsampling

In downsampling, you simply discard every n-th frame. For example, if your source audio would
have a sample rate of 4Hz, you can discard every 4-th frame to reduce the data size by a quarter.
Alternatively, for more agressive compression, you could only pass the first frame and discard the
other three to achieve data reduction by three quarters. This compression strongly affects audio
quality and all kinds of workarounds exist to minimize this effect. For this assignment, we prefer
good audio quality, but implementation of these workarounds is not required.

7https://larsimmisch.github.io/pyalsaaudio/terminology.html
8http://www.topherlee.com/software/pcm-tut-wavformat.html

6

https://larsimmisch.github.io/pyalsaaudio/terminology.html
http://www.topherlee.com/software/pcm-tut-wavformat.html
https://larsimmisch.github.io/pyalsaaudio/terminology.html
http://www.topherlee.com/software/pcm-tut-wavformat.html

A.5.2 Bit reduction

Another way to cut down on data size, is by reducing the amount of bits every sample needs. By
reducing its representation from for example 16 bits to 8 bits, the size of the data is cut in half.
This can also cause artifacts in the audio, so a balanced combination is probably best.

7

	Introduction
	Formal Introduction

	Installation
	Implementation
	Base
	Report
	Code Quality
	Bonuses

	Grading
	Submission
	Part one
	Part two
	Final Words

	Appendix
	RFC 768 Packet Definition & Documentation
	Sockets
	ALSA Framework
	The WAVE Format
	Sending your own music

	Quality
	Downsampling
	Bit reduction

