
EXAM: Parallel Programming

June 10, 2016, 14:00 – 17:00

The duration of this exam is 3 hours. The number of (itemized) questions
is 6 with a total of 18 items. Behind each item the number of points to be
earned is depicted between square brackets (total number of points is
100). This exam is “open book”, which means you can use your own
notes and textbook. The use of electronic devices is not allowed. Give
arguments with each answer: an answer without arguments will not be
graded [0].

Question 1 [15]

1. Describe the difference between a message passing platform and a
shared address space platform. [3]

2. Explain which problems need to be solved when building a shared
address space platform as a physical parallel processor architecture
(Shared Memory Machine), in which each processor has its own
cache. Describe also possible solutions to these problems. [6]

3. Suppose we want to build a shared address space platform using a
multistage interconnection network to connect the processors to a
set of memory banks. Describe how main memory can be divided
into these banks and how memory addressing can be used to route
the data in this interconnection network (assume an Omega
network was used for the interconnection network). [6]

Question 2 [20]

1. Describe how Minimum Spanning Tree and Travelling Salesman
Problem are related. [3]

2. Describe how Prim’s algorithm to solve Minimum Spanning Tree
is very similar to Dijkstra’s algorithm to compute Single Source
Shortest Path problem. Explain why both algorithms are in fact
very similar. [5]

3. Explain that Boruvka’s algorithm for Minimum Spanning Tree has
the advantage over Prim’s algorithm that this algorithm is
intrinsically parallel. [3]

4. When actually parallelizing Boruvka’s algorithm on a Distributed
Memory Computer this advantage can easily disappear. Explain
why. [9]

Question 3 [20]

1. Dense Matrix times Vector Multiplication can be rather easily
parallelized by loop blocking techniques resulting in the parallel
execution of multiple level 2 BLAS routine. Describe how this
works. [3]

2. Explain that for Sparse Matrix times Vector Multiplication the
solution as described in 1 leads to load-balancing problems.
Describe how this problem can be solved. [3]

3. Describe step by step how this load balancing problem for Sparse
Matrix Multiplication can be solved automatically within tUPL by
the application of transformations (among which: loop blocking,
materialization, and orthogonalization) starting from the very
simple initial specification:

forelem (t; t ε T)
{ Value_C[t.i]+= Value_A[t.i,t.j]*Value_B[t.j]}

[14]

Question 4 [15]

1. Describe how dense BLAS2/3 routines can be employed when
solving Ax=b for a Sparse Matrix A by Block LU factorization. [3]

2. Describe why Block LU factorization does not work very well for
Sparse Matrices A. [3]

3. In general LU factorization for solving linear systems of equations
can lead to numerical instabilities. Describe that this problem is the
same for both dense matrices and sparse matrices, but that in
practice, when implementing pivoting strategies, this problem is
much harder to solve for sparse matrices compared to dense
matrices. [9]

Question 5 [15]

1. Explain how the Bitonic Sort Network works. [6]
2. Show that each stage in the Bitonic Sort Network can be

implemented as a Perfect Shuffle. Demonstrate this for the Bitonic
Sort Network with 8 inputs and 8 outputs. [9]

Question 6 [15]

1. Explain in detail why in tUPL the programmer does not have to
bother about data structures. [3]

2. Describe the relationship between Data Flow Computing and
tUPL. [6]

3. Explain why or why not tUPL might lead to an efficient
implementation platform for parallel programming whereas Data
Flow computing was never successfully/efficiently implemented.
[6]

