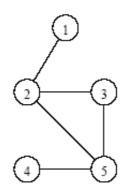
Parallel Graph Algorithms

Basic Definitions

- An *undirected graph G* is a pair (*V,E*), where *V* is a finite set of points called *vertices* and *E* is a finite set of *edges*.
- An edge e ∈ E is an unordered pair (u,v), where u and v ∈ V.
- In a directed graph, the edge e is an <u>ordered</u> pair (u,v). An edge (u,v) is <u>outgoing edge of</u> vertex u and is <u>incoming edge of</u> vertex v.
- A *path* from a vertex v to a vertex u is a sequence $\langle v_0, v_1, v_2, ..., v_k \rangle$ of vertices, where $v_0 = v$, $v_k = u$, and $(v_i, v_{i+1}) \in E$ for i = 0, 1, ..., k-1.
- The length of a path is defined as the number of edges in the path.

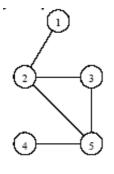
Representations (Undirected Graphs)

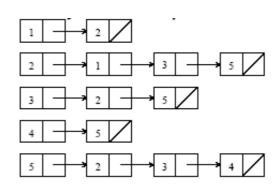
Adjacency matrix representation



A =
$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Adjacency list representation

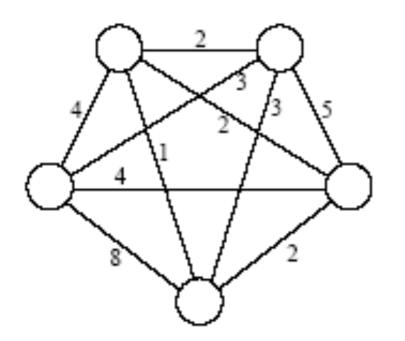


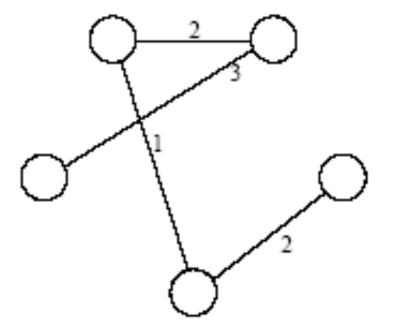


Problem 1: Minimum Spanning Tree

- A *spanning tree* of an <u>undirected</u> graph *G* is a subgraph of *G*, which is a tree containing all the vertices of *G*. So the spanning tree does not contain necessarily all the edges of *G* but a subset.
- In a weighted graph, the weight of a sub-graph is the sum of the weights of the edges in the subgraph.
- A minimum spanning tree (MST) for a weighted undirected graph is a spanning tree with minimum weight.

In a Picture





Relationship with **Traveling Salesman Problem (TSP)**

- Normally for TSP complete graphs are used (there is always a route in between two cities no matter how long it takes)
- ➤ An incomplete graph for MST can be completed by adding edges with a very large weight (note that this will not have any effect on the solution)
- ➤ A solution of the TSP yields a cycle with minimal weight. By deleting any edge this would result in a spanning tree
- ➤ So a solution of TSP cannot have less weight than the weight of the MST
- So the weight of MST is a lower bound on the weight of TSP

Sequential Algorithms for MST

- Borůvka's algorithm (1926), Kruskal's algorithm (1956) and Prim's algorithm (1957)
- (Historical note) Borůvska's algorithm was used in 1926 to construct an efficient electricity network in Moravia (Czech Republic)*
- Kruskal's and Prim's algorithm are both based on the selecting a single lightest weight edge in each step of the algorithm

^{*}The algorithm was rediscovered by Choquet in 1938;^[4] again by Florek, Łukasiewicz, Perkal, Steinhaus, and Zubrzycki^[5] in 1951; and again by **Sollin** ^[6] **in 1965**. Because Sollin was the only computer scientist in this list living in an English speaking country, this algorithm is frequently called Sollin's algorithm.

Light-Edge Property

Given a weighted undirected graph G = (V, E), then for any cut set S (S C E), the minimal weighted edge in S has to be an edge of the MST

A cut sets S cuts the graph into two sets U and V\U such that any path from a node x in U to a node y in V\U contains an edge from S

Proof: Assume we have a cut set S which contains an edge e=(x,y) with minimal weight, which is not part of the MST. Then there is a path P in MST, which connects x and y and which does not contain e. So, because x and y are on opposite sides of e, next to e there must be an edge e' in S with e' on the path P. Now add e to the MST = MST', then e and e' are part of a cycle in MST'. Delete e' from MST', and we obtain another MST with a lesser weight (w(e) < w(e')). Contradiction.

Kruskal's Algorithm

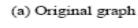
As decribed by Kruskal in 1956:

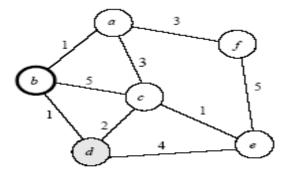
"Perform the following step as many times as possible: Among the edges of G not yet chosen, choose the shortest edge which does not form any loops with those edges already chosen"

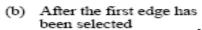
Prim's Algorithm

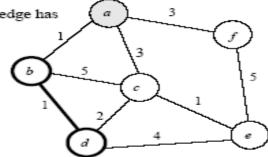
PRIM_MST(V, E, w, r): Given V, E, and w weight function, build MST starting from vertex r

```
procedure PRIM_MST(V, E, w, r)
2.
          begin
               V_T := \{r\};
4.
               d[r] := 0;
5.
               for all v \in (V - V_T) do
                    if edge (r, v) exists set d[v] := w(r, v);
6.
7.
                    else set d[v] := \infty;
8.
               while V_T \neq V do
9.
               begin
                    find a vertex u such that d[u] := \min\{d[v] | v \in (V - V_T)\};
10.
11.
                    V_T := V_T \cup \{u\};
12.
                    for all v \in (V - V_T) do
                         d[v] := \min\{d[v], w(u, v)\};
13.
14.
               endwhile
15.
          end PRIM_MST
```

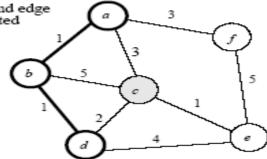




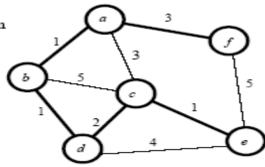




(c) After the second edge has been selected



(d) Final minimum spanning tree



а	0	1	3	∞	∞	3
b	1	0	5	1	∞	∞
c	3	5	0	2	1	∞
d	∞	1	2	0	4	∞
e	∞	∞	1	4	0	5
f	2	∞	∞	∞ 1 2 0 4 ∞	5	0

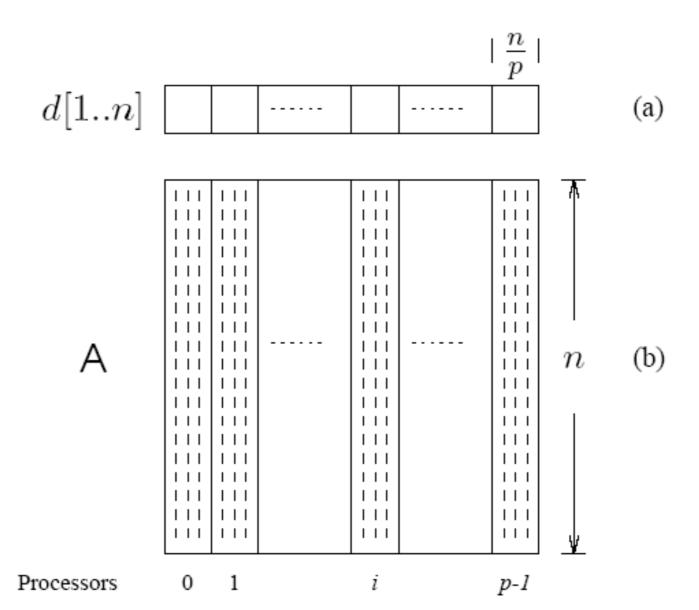
	Г					_
а	0	1	3	∞	∞	3
b	1	0	5	1	∞	∞
c	3	5	0	∞ 1 2 0 4	1	∞
d	∞	1	2	0	4	∞
e	∞	∞	1	4	0	5
f	3	∞	∞	∞	5	0

						_
а	0	1	3	∞	∞	3
b	1	0	5	1	∞	∞
c	3	5	0	2	1	∞
d	∞	1	2	0	4	∞
e	∞	∞	1	4	0	5
f		1 0 5 1 ∞	∞	∞	5	0
	3					_

а	0	1	3	∞	∞	3
b	1	0	5	1	∞	∞
c	3	5	0	2	1	∞
d	∞	1	2	0	4	∞
а b c d	∞	∞	1	4	0	5
f	3	∞	∞	∞	5	0

Prim's Algorithm: Parallel Formulation

- The algorithm works in *n* outer iterations it is hard to execute these iterations concurrently.
- The inner loop is relatively easy to parallelize. Let *p* be the number of processes, and let *n* be the number of vertices.
- The adjacency matrix is partitioned in a 1-D block fashion (column slices), with distance vector d partitioned accordingly. See next slide.
- In each step, each processor selects the locally closest node, followed by a global reduction to select globally closest node.
- This node is inserted into MST, and the choice is broadcasted to all processors.
- Each processor updates its part of the d vector locally.



Computational Aspects

- The cost to select the minimum entry is $O(n/p + \log p)$.
- The cost of a broadcast is O(log p).
- The cost of local update of the d vector is O(n/p).
- The parallel time per iteration is O(n/p + log p).
- The total parallel time (n iterations) is given by $O(n^2/p + n \log p)$.

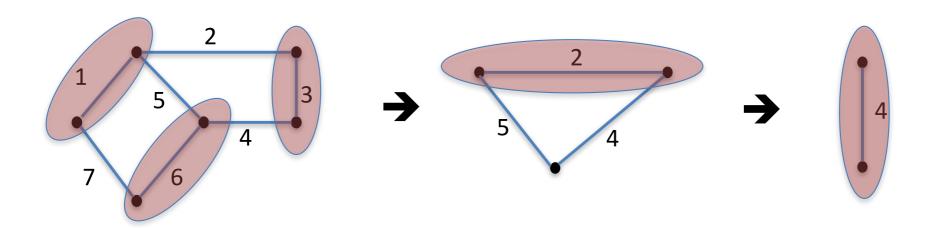
Borůvka's Algorithm (1926)

While there are edges remaining:

- (1) select the minimum weight edge out of each vertex and contract each connected component defined by these edges into a vertex;
- (2) remove self edges, and when there are redundant edges keep the minimum weight edge; and
- (3) add all selected edges to the MST.

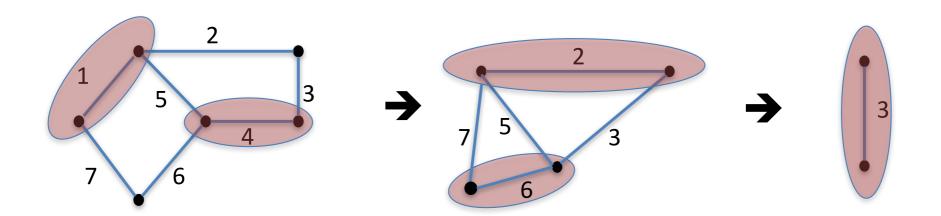
Note that this formulation is inherently parallel while computers were not invented at that time, or maybe **because** computers were not invented yet

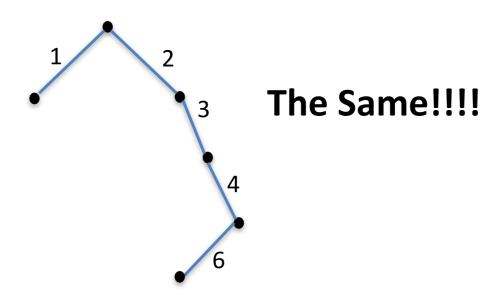
Example





Example (other execution order)





Notes to Borůvka's Algorithm

- At each step the contractions of nodes u and v with (u,v) a minimal edge can be executed in parallel with the contraction of nodes x and w with (x,w) a minimal edge, if $v \neq x$ and $u \neq w$. (Note, $u \neq x$ and $v \neq w$ automatically holds)
- So at each step at least ½ |V| vertices are eliminated → at most log (n) steps are required
- However, also the amount of available parallelism is reduced by an half after each step → uneven load balance

Input Data Partitioning

- Recall separator sets (nested dissection) for undirected graphs, based on levellization (BFS).
- The set of nodes V is divided into P disjoint subsets and separator sets:

$$V = V_1 U S_2 U V_2 U S_3 ... S_P U V_P$$

 $P = number of processors and |V_i| about equal for all i$

Distribute the edges E such that each processor i has

```
E_i = \{ (u,v) \mid u \in V_i \text{ and } v \in V_i \}, \text{ and}

Left_E_i = \{ (u,v) \mid u \in S_i \text{ and } v \in V_i \}, \text{ and}

Right_E_i = \{ (u,v) \mid u \in V_i \text{ and } v \in S_{i+1} \}
```

- → First phase every processor computes in parallel an MST for each E_i
- → Second these partial MST's are knitted together by "synchronizing" the choice of minimum weight edge of Right_E_i with Left_E_{i+1}

Problem 2: Single-Source Shortest Paths

- For a weighted graph G = (V, E, w, s), the single-source shortest paths problem is to find the shortest paths from a vertex $s \in V$ to all other vertices in V (w is the weight function of the edges).
- Dijkstra's algorithm is similar to Prim's algorithm.
 It maintains a set of nodes for which the shortest paths are known.
- It grows this set based on the node closest to source using one of the nodes in the current shortest path set.

Dijkstra's Algorithm

```
1.
          procedure DIJKSTRA_SINGLE_SOURCE_SP(V, E, w, s)
2.
          begin
3.
               V_T := \{s\};
4.
               for all v \in (V - V_T) do
5.
                    if (s, v) exists set l[v] := w(s, v);
6.
                    else set l[v] := \infty;
7.
               while V_T \neq V do
8.
               begin
9.
                    find a vertex u such that l[u] := \min\{l[v] | v \in (V - V_T)\};
10.
                    V_T := V_T \cup \{u\};
                    for all v \in (V - V_T) do
11.
12.
                         l[v] := \min\{l[v], l[u] + w(u, v)\};
13.
               endwhile
         end DIJKSTRA_SINGLE_SOURCE_SP
14.
```

Similarities!!!!!!!!

Prim's Algorithm for MST

```
begin find a vertex u such that d[u]:=\min\{d[v]|v\in (V-V_T)\}; V_T:=V_T\cup\{u\}; for all v\in (V-V_T) do d[v]:=\min\{d[v],w(u,v)\}; endwhile
```

Dijkstra's Algorithm for Single Source Shortest Path

```
begin find a vertex u such that l[u] := \min\{l[v]|v \in (V-V_T)\}; V_T := V_T \cup \{u\}; for all v \in (V-V_T) do l[v] := \min\{l[v], l[u] + w(u,v)\}; endwhile
```

Dijkstra's Algorithm: Parallel Formulation

- Very similar to the parallel formulation of Prim's algorithm for minimum spanning trees.
- The weighted adjacency matrix is partitioned using the 1-D block mapping (column slicing).
- Each process selects, locally, the node closest to the source, followed by a global reduction to select next node.
- The node is broadcast to all processors and the *l*-vector updated.

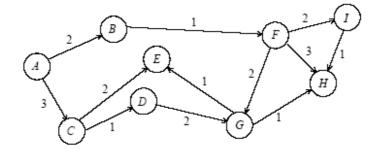
Problem 3: All-Pairs Shortest Paths

- Given a weighted graph G(V,E,w), the *all-pairs* shortest paths problem is to find the shortest paths between all pairs of vertices $v_i, v_j \in V$.
- A number of algorithms are known for solving this problem: Matrix-Multiplication Based algorithm, Dijkstra's algorithm, Floyd's algorithm.

Matrix-Multiplication Based Algorithm

- Consider the multiplication of the weighted adjacency matrix with itself except, in this case, we replace the multiplication operation in matrix multiplication by addition, and the addition operation by minimization.
- Notice that the product of weighted adjacency matrix with itself returns a matrix that contains shortest paths of length 2 between any pair of nodes.
- It follows from this argument that A^n contains all shortest paths.

In a Picture



$$A^{2} = \begin{pmatrix} \infty & 0 & \infty & \infty & \infty & 1 & 3 & 4 & 3 \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & \infty & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty \\ \infty & 0 & \infty \\ \infty & 1 & 0 \end{pmatrix}$$

$$A^{8} = \begin{pmatrix} \infty & 0 & \infty & \infty & 4 & 1 & 3 & 4 & 3 \\ \infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty \\ \infty & \infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty \\ \infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & 0 & 2 & 3 & 2 \\ \infty & \infty & \infty & \infty & 1 & \infty & 0 & 1 & \infty \\ \infty & 0 & \infty \\ \infty & 1 & 0 \end{pmatrix}$$

Computational Aspects

- For (semi) complete graphs and sequential execution:
 - A^n is computed by doubling powers i.e., as A, A^2 , A^4 , A^8 , and so on.
 - We need log n (dense) matrix multiplications, each taking time $O(n^3)$.
 - The serial complexity of this procedure is $O(n^3 \log n)$.
- For (semi) complete graphs and parallel execution:
 - Each of the log n matrix multiplications can be performed in parallel.
 - We can use n^3 processors to compute each matrix-matrix product in time log n.
 - The entire process takes $O(log^2n)$ time.

Note that for incomplete graphs (leading to sparse matrices) this complexity does not change very much, because sparse x sparse matrix multiply very easily lead to full matrices.

Dijkstra's Algorithm for All-Pairs Shortest Paths

Sequential Execution:

- Execute n instances of the single-source shortest path problem, one for each of the n source vertices.
- Complexity is $O(n^3)$.

Parallel Execution:

- execute each of the n shortest path problems on a different processor (source partitioned), or
- use a parallel formulation of the shortest path problem to increase concurrency (source parallel)

Source Partitioned Formulation

- Use n processors, each processor P_i finds the shortest paths from vertex v_i to all other vertices by executing Dijkstra's sequential single-source shortest paths algorithm.
- It requires no interprocess communication (provided that the adjacency matrix is replicated at all processes).
- The parallel run time of this formulation is: $O(n^2)$. $O(n^2)$ is the same time complexity as Prim's algorithm.
- While the algorithm is cost optimal, it can only use *n* processors.

Source Parallel Formulation

In this case, each of the shortest path problems is further executed in parallel. We can therefore use up to n^2 processors.

Floyd's Algorithm

- For any pair of vertices v_i , $v_j \in V$, consider all paths from v_i to v_j whose intermediate vertices belong to the set $\{v_1, v_2, ..., v_k\}$. Let $p_{i,j}^{(k)}$ (of weight $d_{i,j}^{(k)}$) be the minimum-weight path among them.
- If vertex v_k is not in the shortest path from v_i to v_j , then $p_{i,j}^{(k)}$ is the same as $p_{i,j}^{(k-1)}$.
- If v_k is in $p_{i,j}^{(k)}$, then we can break $p_{i,j}^{(k)}$ into two paths
 - one from v_i to v_k and
 - one from v_k to v_j

Each of these paths uses vertices from $\{v_1, v_2, ..., v_{k-1}\}$.

As a consequence:

From these observations, the following recurrence relation follows:

$$d_{i,j}^{(k)} = \left\{ egin{array}{ll} w(v_i,v_j) & ext{if } k=0 \ \min\left\{d_{i,j}^{(k-1)},d_{i,k}^{(k-1)}+d_{k,j}^{(k-1)}
ight\} & ext{if } k\geq 1 \end{array}
ight.$$

This equation must be computed for each pair of nodes and for k = 1, n. The serial complexity is $O(n^3)$.

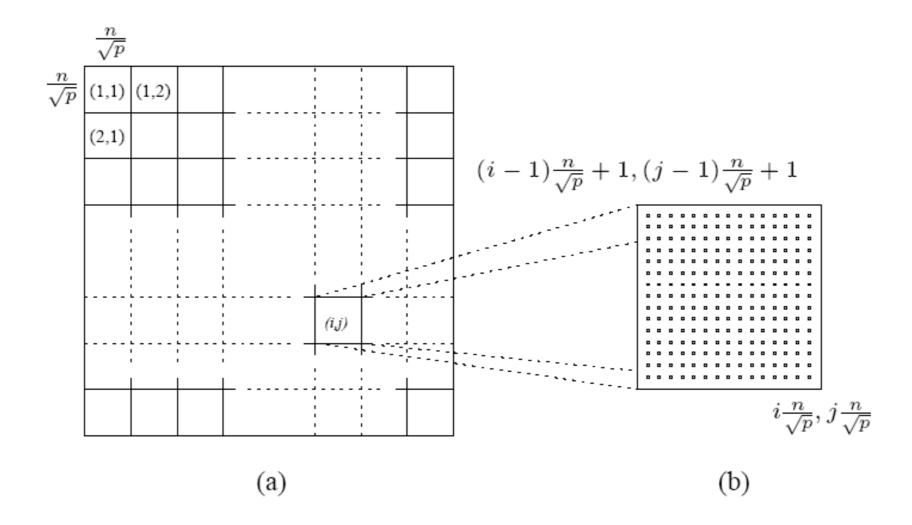
In (pseudo) code

```
1.
            procedure FLOYD_ALL_PAIRS_SP(A)
2.
            begin
                  D^{(0)} = A:
3.
4.
                 for k := 1 to n do
5.
                        for i := 1 to n do
6.
                             for j := 1 to n do
                                   d_{i,j}^{(k)} := \min \left( d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \right);
7.
8.
            end FLOYD_ALL_PAIRS_SP
```

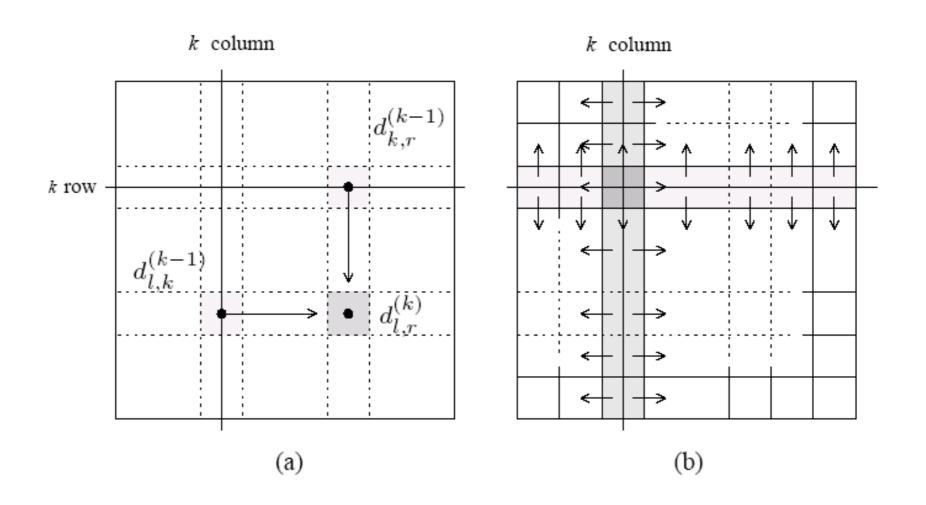
Floyd's Algorithm: Parallel Execution

- Matrix $D^{(k)}$ is divided into p blocks of size $(n / \sqrt{p}) \times (n / \sqrt{p})$.
- Each processor updates its part of the matrix during each iteration.
- To compute $d_{l,r}^{(k-1)}$ processor $P_{i,j}$ must get $d_{l,k}^{(k-1)}$ for all $k \neq r$, and $d_{k,r}^{(k-1)}$ for all $k \neq l$.
- In general, during the k^{th} iteration, each of the \sqrt{p} processes containing part of the k^{th} row send it to the \sqrt{p} 1 processes in the same column.
- Similarly, each of the Vp processes containing part of the k^{th} column sends it to the Vp 1 processes in the same row.

In a Picture



In a Picture: continued



In (pseudo) code

```
procedure FLOYD_2DBLOCK(D^{(0)})
         begin
3.
              for k := 1 to n do
4.
              begin
                   each process P_{i,j} that has a segment of the k^{th} row of D^{(k-1)};
5.
                        broadcasts it to the P_{*,i} processes;
                   each process P_{i,j} that has a segment of the k^{th} column of D^{(k-1)};
6.
                        broadcasts it to the P_{i,*} processes;
7.
                   each process waits to receive the needed segments;
                   each process P_{i,j} computes its part of the D^{(k)} matrix;
8.
9.
              end
10.
         end FLOYD_2DBLOCK
```

Computational Aspects

- During each iteration of the algorithm, the k^{th} row and k^{th} column of processors perform a one-to-all broadcast along their rows/columns.
- The size of this broadcast is 2 times n/\sqrt{p} elements, taking time $O((n \log p)/\sqrt{p})$.
- The synchronization step takes time O(log p), so neglicible.
- The computation time is $O(n^2/p)$.
- The total parallel run time (n step) of the 2-D block mapping formulation of Floyd's algorithm is giving a total of $O(n^3/p) + O(n^2\log p/\sqrt{p})$