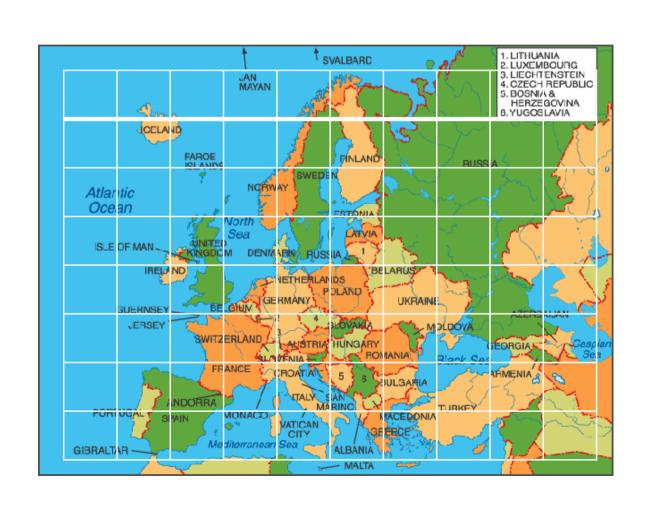
(Parallel) Sparse Matrix Computations

Sparse Matrices arise in

- Simulation of Physical/Chemical Phenomena
 - Modeled through particles/molecules/point clouds
- (Spatial) Database Applications
- Graph Computations
- Combinatorial Optimization

Example: Finite Differences

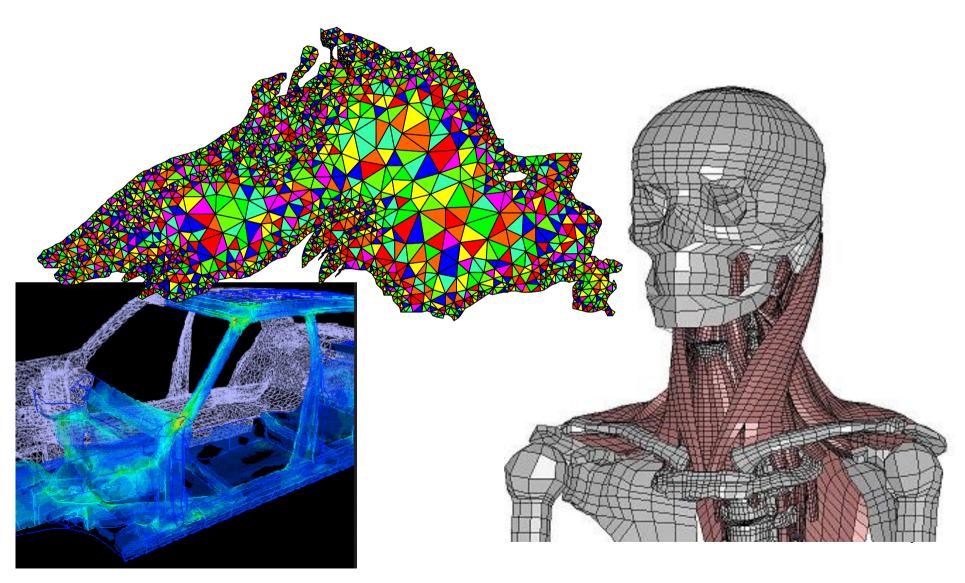


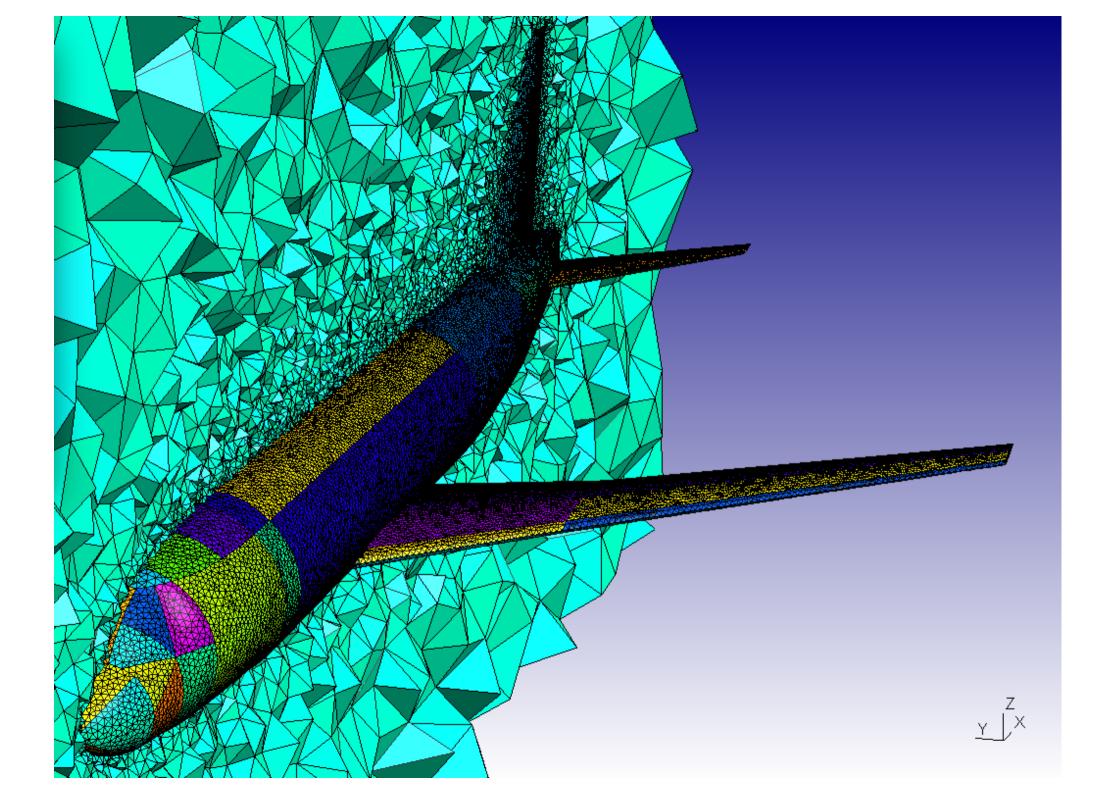
In case of a 5x5 grid this leads to 25 grid points and the following sparse matrix:

Number of grid points in the x direction

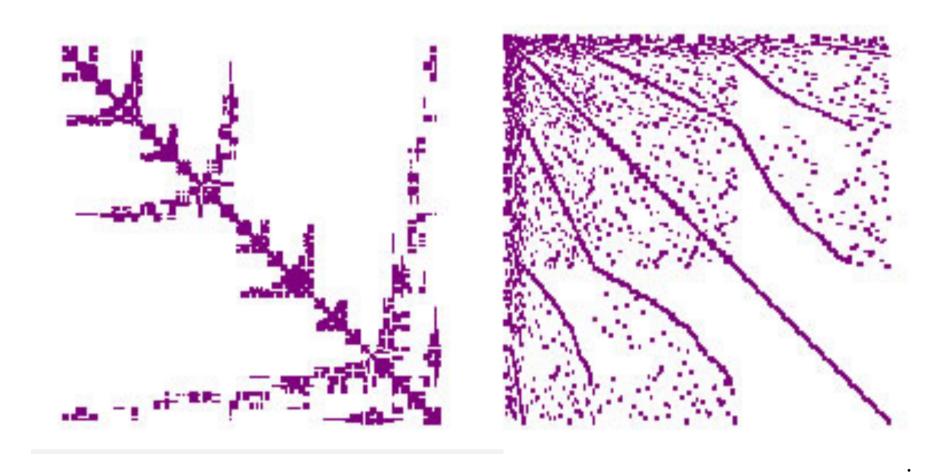
ımber of grid points in the y directior

Example: Finite Elements for more complex geometries





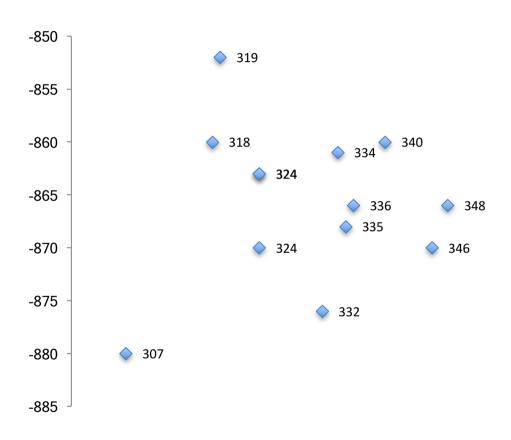
Leads to:



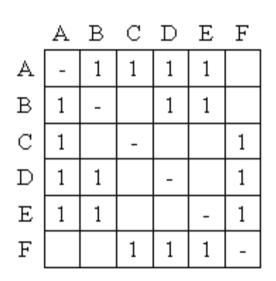
(Spatial) Databases Applications:

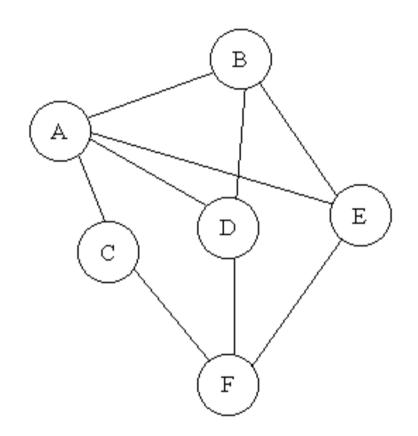
	City	State	ZipCode	Latitude	Longitude		
1	Troy	AL	36081	31.809675	-85.972173		
2	Mobile	AL	36685	30.686394	-88.053241		
3	Trussville	AL	35173	33.621385	-86.602739		
4	Montgomery	AL	36106	32.35351	-86.265837		
5	Selma	AL	36701	32.41179	-87.022234		
6	Talladega	AL	35161	33.43451	-86.102689		
7	Tuscaloosa	AL	35402	33.209003	-87.571005		
8	Huntsville	AL	35801	34.729135	-86.584979		
9	Gadsden	AL	35901	34.014772	-86.007172		
10	Birmingham	AL	35266	33.517467	-86.809484		
11	Montgomery	AL	36124	32.38012	-86.300629		
12	Decatur	AL	35602	34.60946	-86.977029		
13	Eufaula	AL	36072	31.941565	-85.239689		

Stored using longitude and latitude values, normalized x10

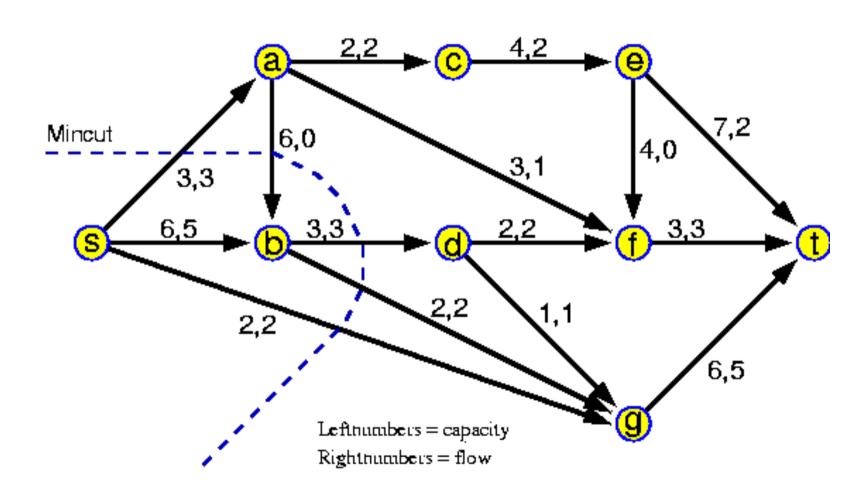


Example: Graph Algorithms





Example: Combinatorial Optimization



Solving Ax = b, with sparse A

- Direct Methods
 - -Ax = LUx = b
- Iterative Methods
 - Write Ax = b as Mx = (M-A)x + b, for some matrix M
 - Solve each time:

$$M x_{k+1} = (M-A) x_k + b$$

Until

$$| | x_{k+1} - x_k | | < \varepsilon$$
, for some small ε

Choose easy invertible M:

- Diagonal part of A (Jacobi's)
- Triangular part of A (Gauss Seidel)
- Combination of the two (Successive Overrelaxation)
- If M = A, then we have the direct method
- Incomplete LU Factorization

Stability in direct methods

Recapture Dense LU:

```
DO I = 1, N
    PIVOT = A(I, I)
    DO J = I+1, N
        MULT = A(J, I) / PIVOT
        A(J, I) = MULT
        DO K = I+1, N
        A(J, K) = A(J, K) - MULT * A(I, K)
        ENDDO
    ENDDO
ENDDO
ENDDO
```

What if the PIVOT IS 0 (or very small)?

Pivoting

$$\left(\begin{array}{cc} 0 & 1 \\ 2 & 3 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 4 \\ 5 \end{array}\right)$$

- Whenever $a_{kk} = 0$ (or small) for some k. Look for a_{mk} which is not zero (or large)
- \rightarrow Permute row m to row k (exchange row m and row k)
- $\rightarrow a_{mk}$ is now on the diagonal

$$\left(\begin{array}{cc} 2 & 3 \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 5 \\ 4 \end{array}\right)$$

Numerical instability with small pivots

$$\begin{pmatrix} 0.001 & 2.42 \\ 1.00 & 1.58 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5.20 \\ 4.57 \end{pmatrix}$$

If Gaussian elimination is performed with 3 decimal floating point arithmetic (0.123 E10), then (1.58 - 2420 = -2420) and (4.57-5200 = -5200)

$$\begin{pmatrix} 0.001 & 2.42 \\ 0 & -2420 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5.20 \\ -5200 \end{pmatrix}$$

Which gives as result
$$\tilde{x} = \begin{pmatrix} -3.00 \\ 2.15 \end{pmatrix}$$
 (0.001* $x_1 = 5.20 - 2.42*2.15 = -0.003$)

However $1.00*-3.00 + 1.58*2.15 = 0.397 \neq 4.57$

This is solved by partial pivoting (again).

→ Ensure that the absolute value of all multipliers <= 1, or for all entries l_{ij} of L: $|l_{ij}|$ <= 1

This is achieved by choosing only pivots a_{kk} such that

$$|a_{kk}^{(k)}| >= |a_{ik}^{(k)}|, i > k$$

This is again achieved by row interchanges.

Example

$$A = \left[\begin{array}{ccc} 3 & 17 & 10 \\ 2 & 4 & -2 \\ 6 & 18 & -12 \end{array} \right]$$

At the first step 6 is chosen as pivot.

So row 1 -> row 3, row 2 -> row 2, and row 3 -> row 1 This can be represented with permutation matrices:

$$P_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \text{ and } P_1 A = \begin{bmatrix} 6 & 18 & -12 \\ 2 & 4 & -2 \\ 3 & 17 & 10 \end{bmatrix}$$

The elimination step can be represented by:

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -1/3 & 1 & 0 \\ -1/2 & 0 & 1 \end{bmatrix}, \text{ so } E_1 P_1 A = \begin{bmatrix} 6 & 18 & -12 \\ 0 & -2 & 2 \\ 0 & 8 & 16 \end{bmatrix}$$

At the second step compute: $E_2P_2E_1P_1A$

With
$$P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 and
$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/4 & 1 \end{bmatrix} \text{ to yield } \begin{bmatrix} 6 & 18 & -12 \\ 0 & 8 & 16 \\ 0 & 0 & 6 \end{bmatrix} = U$$

In general all steps can be represented as:

with
$$E_{\rm i}=$$

Solution is obtained by

1.
$$c = Pb$$

2.
$$Ly = c$$

3.
$$Ux = y$$

with:
$$P = P_{n-1}P_{n-2}...P_2P_1$$
, $PA = LU$

$$Ax = b \implies PAx = Pb \implies LUx = Pb \implies L(Ux) = Pb$$

Complete Pivoting

With partial pivoting the growth of the entries in the lower triangular matrix can still be as large as 2^{n-1} (if pivot ≈ 1 at each step, then entries can double at each step)

→ Need for finding better pivots

Instead of

$$|a_{kk}^{(k)}| >= \max(|a_{ik}^{(k)}|, i > k)$$

choose

$$|a_{kk}^{(k)}| \ge \max(|a_{ij}^{(k)}|, i, j > k)$$

So with complete pivoting each step can be expressed as:

$$E_{n-1}P_{n-1}E_{n-2}P_{n-2}\dots E_1P_1AQ_1Q_2\dots Q_{n-1}=U.$$

So,

$$PAQ = LU$$

with
$$P = P_{n-1}P_{n-2}...P_2P_1$$
 , $Q = Q_1Q_2...Q_{n-2}Q_{n-1}$

So, the solution x can be obtained by

1.
$$c = Pb$$

2.
$$Ly = c$$

3.
$$Uz = y$$

4.
$$Q^{T}x = z$$
 ($Q^{T} = Q^{-1}$)

For many systems pivoting is not required

1. A is strictly diagonally dominant, if $|A_{ii}| > \sum_{j=1_{j\neq i}}^{n} |a_{ij}|$.

Theorem 1 If A^T is strictly diagonally dominant, then LU obtained with no pivoting has the property that $|L_{ij}| \leq 1$, for all i, j.

2. A is symmetric, if $A_{ij} = A_{ji}$ for all i, j. A is positive definite, if for every $x \neq 0$

$$x^T A x > 0$$

 $(x^T A x)$ often reflects the energy of the underlying physical system and is therefore often positive.)

Theorem 2 If A is symmetric positive definite, then

$$\varrho = \max_{i,j,k} |a_{ij}^{(k)}| \le \max_{i,j} |a_{ij}|.$$

In this case LU can be written as $A = L \cdot L^T$ (or LDL^T , avoiding the calculation of square roots). This is called **Choleski Factorization**.

Iterative Methods

$$Mx_{k+1} = (M-A)x_k + b$$

with M easy invertible, meaning that in most of the cases M^{-1} can be directly expressed by a single matrix \mathcal{M}

→ So, the solution can be obtained by simply performing (sparse) matrix multiplications

$$x_{k+1} = \mathcal{M}((M-A)x_k + b)$$

Implementation Issues

- Data Storage: Pointer structures, Linked lists, Linear Arrays
- Pivot Search: Multiple storage schemes
- Masking Operations: Gather/Scatter Operations
- Garbage collection: Fill-in, Explicit garbage collection
- Permutation Issues: Implicit and/or explicit

$$A = (a_{ij}) = \begin{pmatrix} 1. & 0. & 0. & -1. & 0. \\ 2. & 0. & -2. & 0. & 3. \\ 0. & -3. & 0. & 0. & 0. \\ 0. & 4. & 0. & -4. & 0. \\ 5. & 0. & -5. & 0. & 6. \end{pmatrix}$$

Coordinate Scheme Storage

```
int IRN[11], JCN[11]; float VAL[11];
```

	1	2	3	4	5	6	7	8	9	10	11
IRN											
$_{\rm JCN}$	4	5	1	1	5	2	4	3	3	2	1
VAL											

- ➤ No explicit order of the nonzero entries is enforced
- Fetching row/column requires the whole data structure to be searched
- ➤ Insertion and/or deletion of nonzero entries is simple

Sparse Compressed Row/Column Format

int LENROW[5], POINTER[5], ICN[11] float VAL[11]

```
LENROW 2 3 1 2 3

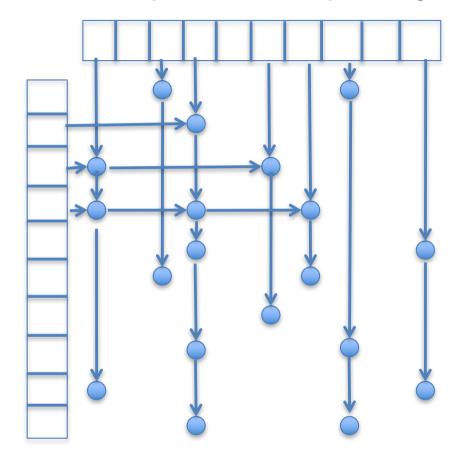
POINTER 1 3 6 7 9

ICN 4 1 5 1 3 2 4 2 3 1 5

VAL -1. 1. 3. 2. -2. -3. -4. 4. -5. 5. 6.
```

- ➤ LENCOL, POINTER, and IRN are used for compressed column format
- > Fetching row or column is very easy in corresponding format
- ➤ Insertion of nonzero elements is a big problem expanded row/column is put at the end, and the LENROW/LENCOL is updated correspondingly
- ➤ Instead of LENROW/LENCOL the last element in each row in ICN is negated

Linked List (Pointer) Implementations



- ➤ Very flexible
- > Access to data very inefficient
 - Pointer chasing
 - > Addresses not consecutive: bad spatial locality

ExtendedColumn/ITpack/JaggedDiagonal Format

Shift all nonzero entries to the beginning of each row

int INDEX[5][max]
float VALUE[5][max]

INDEX:
$$\begin{pmatrix} 1 & 4 & 0 \\ 1 & 3 & 5 \\ 2 & 0 & 0 \\ 2 & 4 & 0 \\ 1 & 3 & 5 \end{pmatrix} \text{ and VALUE: } \begin{pmatrix} 1. & -1. & 0. \\ 2. & -2. & 3. \\ -3. & 0. & 0. \\ 4. & -4. & 0. \\ 5. & -5. & 6. \end{pmatrix}$$

- > Especially suited for vector processing
- > Commonly used in sparse matrix multiplication
- Very good use of spatial locality

Full Dense Format

float A[i][j]

- > Seems wasteful
- Mostly restricted to sub-blocks of the matrix which contain many nonzero's
- Used to locally expand rows and/or columns
- Often used in hybrid storage schemes with other formats

Pivot Search

- When doing Gaussian Elimination: rows are added to other rows
- Compressed row storage seems to be the natural choice
- However, for partial pivoting for instance: each time all elements in a column need to be inspected
- → Both row AND column compressed storage are required

Masking Operations (GATHER/SCATTER)

Adding one sparse row to another:

- Two incrementing pointers
- Scattering target row into a dense row, with a masking array indicating which position in the row are nonzero

```
DO J = POINTER (K), POINTER (K+1) – 1

TARGET (ICN (K)) = VAL (K)

MASK (ICN (K)) = TRUE

DO J = POINTER (I), POINTER (I+1) – 1

TARGET (ICN (J)) = TARGET (ICN (J)) + PIV * VAL (J)

IF MASK (ICN(J)) = FALSE THEN MASK (ICN(J)) = True

DO J = 1, N

IF (MASK (ICN(J)) = TRUE) THEN write TARGET (ICN(J)) back | GATHER
```

Fill-in / Garbage Collection

- Note that the write back will cause problems in general
- Additional space is reserved to store the expanded columns or rows and the old location will have to be released at some point
- In direct solvers this is mostly explicitly controlled!!!!!
- In any case: it is extremely important to minimize the amount of fill-in

Fill-in Control (Markowitch counts)

- $r^{(k)}_{i}$ = the number of nonzero elements in row i of the active (n-k)x(n-k) sub-matrix
- $c^{(k)}_{j}$ = the number of nonzero elements in column j of the active (n-k)x(n-k) sub-matrix
- → Instead of complete pivoting, choose pivot based on:

 $|a_{ij}^{(k)}| \ge u.$ | values in column j of the active submatrix | such that $(r_i^{(k)} - 1)(c_j^{(k)} - 1)$ is minimized.

u (0 < u <= 1) is thresshold parameter balancing between stability and fill-in control

Permutations

- ➤ If $Q = P^T$ then PAQ (= PAP^T) is a symmetric permutation
 - Diagonal elements stay on the diagonal
 - The associated (di)graph stays the same
- ➤ Permutations can be executed explicitly (beforehand), on the fly, or implicitly by referring each time to P(I) instead of I

Lab Assignment

Write a C-program which implements LU factorization with partial pivoting.

See course website for details.