
Fundamentals	of	parallel	
programming



Preliminaries:	Decomposition,	Tasks,	and	
Dependency	Graphs

• The	first	step	in	developing	a	parallel	algorithm	is	to	
decompose	the	problem	into	tasks that	can	be	executed	
concurrently	

• A	given	problem	may	be	decomposed	into	tasks	in	many	
different	ways.	

• A	decomposition	can	be	illustrated	in	the	form	of	a	
directed	graph	with	nodes	corresponding	to	tasks	and	
edges	indicating	that	the	result	of	one	task	is	required	for	
processing	the	next.	Such	a	graph	is	called	a	task	
dependency	graph.		



•

Example:	Multiplying	a	Dense	Matrix	with	a	Vector

Computation	of	each	element	of	output	vector	y is	independent	of	other	elements.	Based	
on	this,	a	dense	matrix-vector	product	can	be	decomposed	into	n tasks.	

Observations:While	tasks	share	data (namely,	the	vector	b ),	they	do	not	have	
any	control	dependencies,	i.e.	no	task	needs	to	wait	for	the	(partial)	completion	
of	any	other.	All	tasks	are	of	the	same	size in	terms	of	number	of	operations.	

è Is	this	the	maximum	number	of	tasks	we	could	decompose	this	problem	into?



•
Example:	Database	Query	Processing	I	

Consider	the	execution	of	the	query:
MODEL = “CIVIC” AND YEAR = 2001 AND

(COLOR = “GREEN” OR COLOR = “WHITE”)

on	the	following	database:	

ID# Model Year Color Dealer Price 
4523 Civic 2002 Blue MN $18,000 
3476 Corolla 1999 White IL $15,000 
7623 Camry 2001 Green NY $21,000 
9834 Prius 2001 Green CA $18,000 
6734 Civic 2001 White OR $17,000 
5342 Altima 2001 Green FL $19,000 
3845 Maxima 2001 Blue NY $22,000 
8354 Accord 2000 Green VT $18,000 
4395 Civic 2001 Red CA $17,000 
7352 Civic 2002 Red WA $18,000 



Example:	Database	Query	Processing	II

This query can be divided into subtasks in various ways.

è Edges	denote	that	the	output	of	one	task	is	needed	to	accomplish	the	next.



Example:	Database	Query	Processing	III	
The query can be decomposed in other ways as well:

è Different	task	decompositions	may	lead	to	significant	differences	with	
respect	to	their	eventual	parallel	performance.	



Data	Dependencies

• True(Flow)-Dependence:	Task	1	computes	a	value	
stored	at	A,	and	Task	2	retrieves	a	value	stored	at	A.

• Anti-Dependence:	Task	1	retrieves	a	value	stored	at	
A,	and	Task	2	computes	a	value	stored	at	A

• Input-Dependence:	Task	1	and	Task	2	both	retrieve	a	
value	stored	at	A

• Output-Dependence:	Task	1	and	Task	2	both	
compute	a	value	stored	at	A



Critical	Path	Length	

• A	directed	path in	the	task	dependency	graph	
represents	a	sequence	of	tasks	that	must	be	
processed	one	after	the	other.	

• The	longest	path	determines	the	shortest	time	in	
which	the	program	can	be	executed	in	parallel.	

• The	length	of	the	longest	path in	a	task	dependency	
graph	is	called	the	critical	path	length.	



Consider	the	task	dependency	graphs	of	the	two	database	query
decompositions:	

èWhat	are	the	critical	path	lengths	for	the	two	task	dependency	graphs?
è If	each	task	takes	10	time	units,	what	is	the	shortest	parallel	execution	time	for	

each	decomposition?	
è How	many	processors	are	needed	in	each	case	to	achieve	this	minimum	

parallel	execution	time?	

#	input	table	entries	≈	
tasksize



Granularity	of	Task	Decompositions	
• The	number	of	tasks	into	which	a	problem	is	decomposed	

determines	its	granularity.	
• Decomposition	into	a	large	number	of	tasks	results	in	fine-

grained	decomposition and	that	into	a	small	number	of	
tasks	results	in	a	coarse	grained	decomposition.	

A	coarse	grained	counterpart	to	the	dense	matrix-vector	product	example.	
è Each	task	3	times	as	big
è The	number	of	tasks	is	3	times	less



Degree	of	Concurrency	

• The	number	of	tasks	that	can	be	executed	in	parallel	is	the	degree	
of	concurrency of	a	decomposition.	

• Since	the	number	of	tasks	that	can	be	executed	in	parallel	may	
change	over	program	execution,	the	maximum	degree	of	
concurrency is	the	maximum	number	of	such	tasks	at	any	point	
during	execution.	
Ø What	is	the	maximum	degree	of	concurrency	of	the	database	query	

examples?
• The	average	degree	of	concurrency is	the	average	number	of	tasks	

that	can	be	processed	in	parallel	over	the	execution	of	the	program.	
Ø Assuming	that	each	tasks	in	the	database	example	takes	identical	

processing	time,	what	is	the	average	degree	of	concurrency	in	each	
decomposition?

• The	degree	of	concurrency	increases	as	the	decomposition	
becomes	finer	in	granularity	and	vice	versa.	



Limits	on	Parallel	Performance	

It	would	appear	that	the	parallel	time	can	be	made	
arbitrarily	small	by	making	the	decomposition	finer	in	
granularity.	However:

• There	is	an	inherent	bound on	how	fine	the	granularity	of	
a	computation	can	be.	
– For	example,	in	the	case	of	multiplying	a	dense	matrix	with	a	

vector,	there	can	be	no	more	than	(n2) concurrent	tasks.
• Concurrent	tasks	may	also	have	to	exchange	data	with	

other	tasks.	This	results	in	communication	overhead.	
• The	tradeoff between	the	granularity	of	a	decomposition	

and	associated	overheads	often	determines	performance	
bounds.	



Task	Interaction	Graphs

• Subtasks	generally	exchange	data	with	others	in	a	
decomposition.	For	example,	even	in	the	trivial	
decomposition	of	the	dense	matrix-vector	product,	if	the	
vector	b	is	not	replicated	across	all	tasks,	they	will	have	to	
communicate	elements	of	the	vector	b.	

• The	graph	of	tasks	(nodes)	and	their	interactions/data	
exchange	(edges) is	referred	to	as	a	task	interaction	graph.	

• Note	that	task	interaction	graphs represent	data	
dependencies,	whereas	task	dependency	graphs represent	
control	dependencies.

• In	fact	task	interaction	graphs	represent	input- and	output-
dependencies,	whereas	task	dependence	graphs	represent	
true-dependencies or	anti-dependencies.



Task	Interaction	Graphs:	An	Example	
Consider	the	problem	of	multiplying	a	sparse matrix	A
with	a	vector	b.	The	following	observations	can	be	made:

• As	before,	the	computation	of	each	element	of	the	result	vector	can	be	viewed	as	
an	independent task.	So	no	true	or	anti	dependencies.

• Unlike	a	dense	matrix-vector	product	though,	only	non-zero	elements of	matrix	A
participate	in	the	computation.	

• If,	for	memory	optimality,	we	also	partition	b across	tasks,	then	one	can	see	that	
the	task	interaction	graph	of	the	computation	is	identical	to	the	graph	of	the	
matrix	A (the	graph	for	which	A represents	the	adjacency	structure).	This	is	not	
always	the	case!!

1



Task	Interaction	Graphs,	Granularity,	and	
Associated	Communication	Overhead

In	general:	if	the	granularity	of	a	decomposition	is	finer,	then	
the	associated	(communication)	overhead	increases.	

Example: Consider	the	sparse	matrix-vector	product	
example	from	previous	slide.	Assume	that	each	node	takes	
unit	time	to	process	and	each	interaction	(edge)	causes	an	
overhead	of	a	unit	time.	

Viewing	node	0	as	an	independent	task	involves	a	useful	
computation	of	one	time	unit and	overhead	(communication)	
of	three	time	units.	
Now,	if	we	consider	nodes	0,	4,	and	5	as	one	task,	then	the	
task	has	useful	computation	totaling	to	three	time	units and	
communication	corresponding	to	five	time	units (five	edges	to	
1,2,6,8	and	9).	Clearly,	this	is	a	more	favorable	ratio	than	the	
former	case.	



Decomposition	Techniques	

While	there	is	no	single	recipe	that	works	for	all	
problems,	we	present	a	set	of	commonly	used	
techniques	that	apply	to	broad	classes	of	
problems.	
• Recursive	Decomposition	
• Data	Decomposition	
• Exploratory	Decomposition	
• Speculative	Decomposition	



Recursive	Decomposition	

• Generally	suited	to	problems	that	are	solved	
using	the	divide-and-conquer strategy.	

• A	given	problem	is	first	decomposed	into	a	set	
of	sub-problems.	

• These	sub-problems	are	recursively	
decomposed	further	until	a	desired	
granularity	is	reached.	



Recursive	Decomposition:	Example	
A	classic	example	of	a	divide-and-conquer	algorithm	on	which	we
can	apply	recursive	decomposition	is	Quicksort.	

In this example, once the list has been partitioned around the pivot, each sub-list
can be processed concurrently (i.e., each sub-list represents an independent
subtask). This can be repeated recursively.

Random	pick



Data	Decomposition	
• Identify	the	data	on	which	computations	are	
performed.	

• Partition	this	data	across	various	tasks.	
• This	data	partitioning	induces	a	decomposition	of	the	
problem.	

• Data	can	be	partitioned	in	various	ways.	This	critically	
impacts	performance	of	a	parallel	algorithm.

• Often,	each	element	of	the	output	can	be	computed	
independently	of	others	(but	simply	as	a	function	of	
the	input).	

• A	partition	of	the	output	across	tasks	decomposes	the	
problem	naturally.	



Output	Data	Decomposition:	Example	
Consider	the	problem	of	multiplying	two	n	x	nmatrices	A
and	B to	yield	matrix	C.	The	output	matrix	C can	be	
partitioned	into	four	tasks	as	follows:	

Task	1:

Task	2:

Task	3:

Task	4:



•
Output	Data	Decomposition:	Example	

A	partitioning	of	output	data	does	not result	in	a	unique decomposition	into	tasks.	
For	example,	for	the	same	problem	as	in	previous	slide,	with	identical	output	data	
distribution,	we	can	derive	the	following	two	(other)	decompositions:	

Decomposition I Decomposition II
Task 1:  C1,1 = A1,1 B1,1

Task 2:  C1,1 = C1,1 + A1,2 B2,1

Task 3:  C1,2 = A1,1 B1,2

Task 4:  C1,2 = C1,2 + A1,2 B2,2

Task 5:  C2,1 = A2,1 B1,1

Task 6:  C2,1 = C2,1 + A2,2 B2,1

Task 7:  C2,2 = A2,1 B1,2

Task 8:  C2,2 = C2,2 + A2,2 B2,2

Task 1:  C1,1 = A1,1 B1,1

Task 2:  C1,1 = C1,1 + A1,2 B2,1

Task 3:  C1,2 = A1,2 B2,2

Task 4:  C1,2 = C1,2 + A1,1 B1,2

Task 5:  C2,1 = A2,2 B2,1

Task 6:  C2,1 = C2,1 + A2,1 B1,1

Task 7:  C2,2 = A2,1 B1,2

Task 8:  C2,2 = C2,2 + A2,2 B2,2



Input	Data	Partitioning	

• Generally	applicable	if	each	output	can	be	
naturally	computed	as	a	function	of	the	input.	

• In	many	cases,	this	is	the	only	natural	
decomposition	because	the	output	is	not	clearly	
known	a-priori	(e.g.,	the	problem	of	finding	the	
minimum	in	a	list,	sorting	a	given	list,	etc.).	

• A	task	is	associated	with	each	input	data	
partition.	The	task	performs	as	much	of	the	
computation	with	its	part	of	the	data.	
Subsequent	processing	combines	these	partial	
results.	



Intermediate	Data	Partitioning	

• Computation	can	often	be	viewed	as	a	
sequence	of	transformation	from	the	input	to	
the	output	data.	

• In	these	cases,	it	is	often	beneficial	to	use	one	
of	the	intermediate	stages	as	a	basis	for	
decomposition.	



Intermediate	Data	Partitioning:	Example	
Let us revisit the example of dense matrix
multiplication. We first show how we can visualize this
computation in terms of intermediate matrices D.



Intermediate	Data	Partitioning:	Example	
A	decomposition	of	the	intermediate	data	structure	leads	to	the	following	
decomposition	into	8	+	4	tasks:	

Stage	I

Stage	II

Task 01:  D1,1,1= A1,1 B1,1 Task 02:  D2,1,1= A1,2 B2,1

Task 03:  D1,1,2= A1,1 B1,2 Task 04:  D2,1,2= A1,2 B2,2

Task 05:  D1,2,1= A2,1 B1,1 Task 06:  D2,2,1= A2,2 B2,1

Task 07:  D1,2,2= A2,1 B1,2 Task 08:  D2,2,2= A2,2 B2,2

Task 09:  C1,1 = D1,1,1 + D2,1,1 Task 10:  C1,2 = D1,1,2 + D2,1,2

Task 11:  C2,1 = D1,2,1 + D2,2,1 Task 12:  C2,,2 = D1,2,2 + D2,2,2

1

1

11

1



The	Owner	Computes	Rule	

• The	Owner	Computes	Rule generally	states	that	
the	process	assigned	a	particular	data	item	is	
responsible	for	all	computation	associated	with	it.	

• In	the	case	of	input	data	decomposition,	the	
owner	computes	rule	implies	that	all	
computations	that	use	the	input	data	are	
performed	by	the	process.	

• In	the	case	of	output	data	decomposition,	the	
owner	computes	rule	implies	that	the	output	is	
computed	by	the	process	to	which	the	output	
data	is	assigned.	



Exploratory	Decomposition	

• In many cases, the decomposition of the
problem goes hand-in-hand with its execution.

• These problems typically involve the
exploration (search) of a state space of
solutions.

• Problems in this class include a variety of
discrete optimization problems (0/1 integer
programming), theorem proving, game
playing, etc.



Exploratory	Decomposition:	Example	
A	simple	application	of	exploratory	decomposition	is	in	the	solution	
to	a	15	puzzle	(a	tile	puzzle).	We	show	a	sequence	of	three	moves	
that	transform	a	given	initial	state	(a)	to	desired	final	state	(d).	

Of	course,	the	problem	of	computing	the	solution,	in	general,	is	much	
more	difficult	than	in	this	simple	example.	





Exploratory	Decomposition:	
Anomalous	Computations	

• In many instances of exploratory decomposition, the
decomposition technique may change the amount of
work done by the parallel formulation.

• This	change	results	in	super- or	sub-linear	speedups.	

2m+1

Speedup:	2m+1 Speedup:	1

(b)	In	case	the	serial	search	would	have	searched	the	solution	space	from	right	to	left,	
with	the	subtrees	interchanged	accordingly	then	Speedup	would	have	been	1/m	



Speculative	Decomposition	
• In	some	applications,	dependencies between	tasks	are	not	

known	a-priori.	
• For	such	applications,	it	is	impossible	to	identify	

independent	tasks.	
• There	are	generally	two	approaches	to	dealing	with	such	

applications:	conservative	approaches,	which	identify	
independent	tasks	only	when	they	are	guaranteed	to	not	
have	dependencies,	and,	optimistic	approaches,	which	
schedule	tasks	even	when	they	may	potentially	be	
erroneous.	

• Conservative	approaches	may	yield	little	concurrency	and	
optimistic	approaches	may	require	roll-back mechanism	in	
the	case	of	an	error.



Mapping	Tasks	onto	Processes

• In	general,	the	number	of	tasks	in	a	
decomposition	exceeds	the	number	of	processing	
elements	(Processors,	CPU’s)	available.	

• For	this	reason,	a	parallel	algorithm	must	also	
provide	a	mapping	of	tasks	to	processes.	

We	refer	to	the	mapping	as	being	from	tasks	to	processes,	as	
opposed	to	processors.	This	is	because	typical	programming	
APIs,	as	we	shall	see,	do	not	allow	easy	binding	of	tasks	to	
physical	processors.	Rather,	we	aggregate	tasks	into	processes	
and	rely	on	the	system	to	map	these	processes	to	physical	
processors.	We	use	processes,	not	in	the	UNIX	sense	of	a	
process,	rather,	simply	as	a	collection	of	tasks	and	associated	
data.



Mapping	Tasks	onto	Processes

• Appropriate	mapping	of	tasks	to	processes	is	critical	to	
the	parallel	performance	of	an	algorithm.	

• Mappings	are	determined	by	both	the	task	
dependency	and	task	interaction	graphs.	

• Task	dependency	graphs	can	be	used	to	ensure	that	
work	is	equally	spread	across	all	processes	at	any	point	
(minimum	idling	and	optimal	load	balance).	

• Task	interaction	graphs	can	be	used	to	make	sure	that	
processes	need	minimum	interaction	with	other	
processes	(minimum	communication).	



Mapping	Tasks	onto	Processes

An	appropriate	mapping	must	minimize	parallel	
execution	time	by:	

• Mapping	independent	tasks	to	different	processes.	

• Assigning	tasks	on	critical	path	to	processes	as	soon	
as	they	become	available.	

• Minimizing	interaction	between	processes	by	
mapping	tasks	with	dense	interactions	to	the	same	
process	or	to	nearby	processes.	



•

Example	

These mappings were arrived at by viewing the
dependency graph in terms of levels (no two nodes in a
level have dependencies). Tasks within a single level are
then assigned to different processes.



Mapping	Trade-offs	

• Mappings	must	minimize	overheads.	
• Primary	overheads	are	communication and	
idling.	

• Minimizing	these	overheads	often	represents	
contradicting	objectives.	

• Assigning	all	work	to	one	processor	trivially	
minimizes	communication	at	the	expense	of	
significant	idling.	



•

Mapping	Techniques	for	Minimum	Idling	

Mapping	must	simultaneously	minimize	idling	and	
load	balance.	Merely	balancing	load	does	not	
minimize	idling.	



Mapping	techniques	can	be	static or	dynamic.	

• Static	Mapping:	Tasks	are	mapped	to	processes	a-
priori.	For	this	to	work,	we	must	have	a	good	
estimate of	the	size	of	each	task.	Even	in	these	
cases,	the	problem	may	be	NP	complete.	

• Dynamic	Mapping:	Tasks	are	mapped	to	
processes	at	runtime.	This	may	be	because	the	
tasks	are	generated	at	runtime,	or	that	their	sizes	
are	not	known.	



Mappings	Based	on	Task	Partitioning	

• Partitioning	a	given	task-dependency	graph	
across	processes.	

• Determining	an	optimal	mapping	for	a	general	
task-dependency	graph	is	an	NP-complete	
problem.	

• Excellent	heuristics	exist	for	structured	graphs.



Partitioning	the	Graph	of	Lake	Superior	

Random	Partitioning

Partitioning	for	minimum	edge-cut.



Schemes	for	Dynamic	Mapping	

• Dynamic	mapping	is	sometimes	also	referred	
to	as	dynamic	load	balancing,	since	load	
balancing	is	the	primary	motivation	for	
dynamic	mapping.	

• Dynamic	mapping	schemes	can	be	centralized
or	distributed.	



Centralized	Dynamic	Mapping	

• Processes	are	designated	as	masters or	slaves.	
• When	a	process	runs	out	of	work,	it	requests	the	
master	for	more	work.	

• When	the	number	of	processes	increases,	the	master	
may	become	the	bottleneck.	

• To	alleviate	this,	a	process	may	pick	up	a	number	of	
tasks	(a	chunk)	at	one	time.	This	is	called	Chunk	
Scheduling.	

• Selecting	large	chunk	sizes may	lead	to	significant	load	
imbalances as	well.	

• A	number	of	schemes	have	been	used	to	gradually	
decrease	chunk	size as	the	computation	progresses.	



Distributed	Dynamic	Mapping	

• Each	process	can	send	or	receive	work	from	other	
processes.	

• This	alleviates	the	bottleneck	in	centralized	schemes.	
• There	are	four	critical	questions:	

– how	are	sending	and	receiving	processes	paired	together,	
– who	initiates	work	transfer,	
– how	much	work	is	transferred,	and	
– when	is	a	transfer	triggered?	

• Answers	to	these	questions	are	generally	application	
specific.	



Minimizing	Interaction	Overheads	

• Maximize	data	locality:	Where	possible,	reuse	intermediate	data.	
Restructure	computation	so	that	data	can	be	reused	in	smaller	time	
windows.	

• Minimize	volume	of	data	exchange:	There	is	a	cost	associated	with	each	
word	that	is	communicated.	For	this	reason,	we	must	minimize	the	
volume	of	data	communicated.	

• Minimize	frequency	of	interactions:	There	is	a	startup	cost	associated	with	
each	interaction.	Therefore,	try	to	merge	multiple	interactions	to	one,	
where	possible.	

• Minimize	contention	and	hot-spots:	Use	decentralized	techniques,	
replicate	data	where	necessary.	

• Overlapping	computations	with	interactions:	Use	non-blocking	
communications,	multithreading,	and	prefetching	to	hide	latencies.	

• Replicating	data	or	computations.	
• Using	group	communications instead	of	point-to-point	primitives.	
• Overlap	interactions with	other	interactions.	



Parallel	Algorithm	Models	

• Data	Parallel	Model:	Tasks	are	statically	(or	semi-statically)	mapped	
to	processes	and	each	task	performs	similar	operations	on	different	
data.	

• Task	Graph	Model:	Starting	from	a	task	dependency	graph,	the	
interrelationships	among	the	tasks	are	utilized	to	promote	locality	
or	to	reduce	interaction	costs.	

• Master-Slave	Model:	One	or	more	processes	generate	work	and	
allocate	it	to	worker	processes.	This	allocation	may	be	static	or	
dynamic.	

• Pipeline	/	Producer-Consumer	Model:	A	stream	of	data	is	passed	
through	a	succession	of	processes,	each	of	which	perform	some	
task	on	it.	

• Hybrid	Models:	A	hybrid	model	may	be	composed	either	of	
multiple	models	applied	hierarchically	or	multiple	models	applied	
sequentially	to	different	phases	of	a	parallel	algorithm.


