
Parallel	Programming	
Paradigms

A	Long	History
• IVTRAN	(Parallel	Fortran)	language	for	the	ILLIAC	
IV	(1966-1970)

• Several	other	Fortran	language	based	
programming	languages	followed	(Fortran	D,	KAP,	
Vienna	Fortran,	Paraphrase,	Polaris	etc.	etc.)

• Experimental	new	approaches:	Linda,	Irvine	
Dataflow	(Id),	Decoupled	Access	Execute

• Vector	Languages:	Cray	Fortran,	FX/Fortran

Most	Commonly	Used

• MPI:	Message	Passing	Interface
– ARPA,	NSF,	Esprit

• Pthreads:	POSIX	Threads	Linux	Standard
– Portable	Operating-System	Interface	(IEEE,	the	
Open	Group)

• OpenMP:	Open	Multi-Processing
– AMD,	IBM,	Intel,	Cray,	HP,	Fujitsu,	Nvidia,	NEC,	Red	
Hat,	Texas	Instruments,	Oracle	Corporation,	and	
more.

• CUDA:	Compute	Unified	Device	Architecture
– Nvidia

MPI

l Communication	between	processes	in	a	
distributed	program	is	typically	implemented	
using	MPI:	Message	Passing	Interface.

l MPI	is	a	generic	API that	can	be	implemented	
in	different	ways:
- Using	specific	interconnect	hardware,	such	as	
InfiniBand.

- Using	TCP/IP	over	plain	Ethernet.
- Or	even	used	(emulated)	on	Shared	Memory	for	
inter	process	communication	on	the	same	node.

Some	MPI	basic	functions
l #include <mpi.h>
l Initialize	library:	
MPI_Init(&argc, &argv);

l Determine	number	of	processes	that	take	part:
int n_procs;
MPI_Comm_size(MPI_COMM_WORLD, &n_procs);
(MPI_COMM_WORLD	is	the	initially	defined	universe	intracommunicator for	
all	processes)

l Determine	ID	of	this	process:
int id;
MPI_Comm_rank(MPI_COMM_WORLD, &id);

Sending	Messages
MPI_Send(buffer,count,datatype,dest,tag,comm);

Ø buffer:	pointer	to	data	buffer.
Ø count:	number	of	items	to	send.
Ø datatype:	data	type	of	the	items	(see	next	slide).

• All	items	must	be	of	the	same	type.
Ø dest:	rank	number	of	destination.
Ø tag:	message	tag	(integer),	may	be	0.

• You	can	use	this	to	distinguish	between	different	messages.
Ø comm:	communicator,	for	instance	MPI_COMM_WORLD.

•Note:	this	is	a	blocking	send!

MPI	data	types

•You	must	specify	a	data	type	when	performing	
MPI	transmissions.
l For	instance	for	built-in	C	types:

- "int"	translates	to	MPI_INT
- "unsigned	int"	to	MPI_UNSIGNED
- "double"	to	MPI_DOUBLE,	and	so	on.

l You	can	define	your	own	MPI	data	types,	for	
example	if	you	want	to	send/receive	custom	
structures.

Other	calls

l MPI_Recv()
l MPI_Isend(), MPI_Irecv()

- Non-blocking	send/receive
l MPI_Scatter(), MPI_Gather()
l MPI_Bcast()
l MPI_Reduce()

Shutting	down

l MPI_Finalize()

Example:	Computing	Pi
Source:
http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src/pi/C/

int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done)
{

if (myid == 0) {
printf("Enter number of intervals: (0 quits)");
scanf("%d",&n);

}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n == 0) break;

h = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}
mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);

if (myid == 0)
printf("pi = approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));
}
MPI_Finalize();
return 0;

}

Root	process

Pthreads
Pthreads defines	a	set	of	C	programming	language	types,	functions
and	constants.	It	is	implemented	with	a	pthread.h header	and	a	
thread	library.
There	are	around	100	Pthreads procedures,	all	prefixed	"pthread_"	
and	they	can	be	categorized	into	four	groups:
• Thread	management	- creating,	joining	threads	etc.
• Mutexes
• Condition	variables
• Synchronization	between	threads	using	read/write	locks	and	

barriers
The	POSIX	semaphore	API	works	with	POSIX	threads	but	is	not	part	of	threads	
standard,	having	been	defined	in	the	POSIX.1b,	Real-time	extensions	(IEEE	Std
1003.1b-1993) standard.	Consequently	the	semaphore	procedures	are	prefixed	by	
"sem_"	instead	of	"pthread_".

• Program is a collection of threads of control.
– Can be created dynamically, mid-execution, in some

languages
• Each thread has a set of private variables, e.g., local stack

variables
• Also a set of shared variables, e.g., static variables, shared

common blocks, or global heap.
– Threads communicate implicitly by writing and reading

shared variables.
– Threads coordinate by synchronizing on shared variables

PnP1P0

s						
Shared memory

i:	2 i:	5 Private
memory

i:	8

s	=	...y	=	..s	...

local

Pthreads Supports

ØCreating	parallelism

ØSynchronizing

No	explicit	support for	communication,	
because	shared	memory	is	implicit;	a	
pointer	to	shared	data	is	passed	to	a	
thread

“Forking”	Threads
Signature:

int pthread_create(pthread_t *thread_id,
const pthread_attr_t *thread_attribute,
void * (*thread_fun)(void *),
void *funarg);

Example	call:	
errcode = pthread_create(&thread_id, &thread_attribute,

thread_fun, &fun_arg);

thread_id is the thread id or handle (used to halt, etc.)
thread_attribute various attributes

Standard default values obtained by passing a NULL pointer
Sample attribute: minimum stack size

thread_fun the function to be run (takes and returns void*)
fun_arg an argument can be passed to thread_fun when it starts
errorcode will be set nonzero if the create operation fails

Example
void* SayHello(void *foo) {

printf("Hello, world!\n");
return NULL;

}

int main() {
pthread_t threads[16];
int tn;
for(tn=0; tn<16; tn++) {

pthread_create(&threads[tn], NULL, SayHello,
NULL);
}
for(tn=0; tn<16 ; tn++) {

pthread_join(&threads[tn], NULL);
}
return 0;

}

Some	More	Functions
• pthread_yield();

– Informs the scheduler that the thread is willing to yield its
quantum, requires no arguments.

• pthread_exit(void *value);
– Exit thread and pass value to joining thread (if exists)

• pthread_join(pthread_t *thread, void **result);
– Wait for specified thread to finish. Place exit value into *result.

Others:
• pthread_t me; me = pthread_self();

– Allows a pthread to obtain its own identifier pthread_t thread;
• pthread_detach(thread);

– Informs the library that the threads exit status will not be needed by
subsequent pthread_join calls resulting in better threads
performance. For more information consult the library or the man
pages, e.g., man -k pthread..

Shared Data and Threads
• Variables declared outside of main are shared
• Object allocated on the heap may be shared (if pointer is

passed)
• Variables on the stack are private: passing pointer to these

around to other threads can cause problems

• Often done by creating a large “thread data” struct
– Passed into all threads as argument
– Simple example:

char *message = "Hello World!\n";

pthread_create(&thread1,
NULL,
print_fun,
(void*) message);

Basic Types of Synchronization: Barrier

– Especially common when running multiple copies of the
same function in parallel
• SPMD “Single Program Multiple Data”

– simple use of barriers -- all threads hit the same one
work_on_my_subgrid();
barrier;
read_neighboring_values();
barrier;

– more complicated -- barriers on branches (or loops)
if (tid % 2 == 0) {
work1();
barrier

} else { barrier }
– barriers are not provided in all thread libraries

Creating and Initializing a Barrier
• To (dynamically) initialize a barrier, use code similar to

this (which sets the number of threads to 3):
pthread_barrier_t b;
pthread_barrier_init(&b,NULL,3);

• The second argument specifies an attribute object for
finer control; using NULL yields the default attributes.

• To wait at a barrier, a process executes:
pthread_barrier_wait(&b);

Basic Types of Synchronization: Mutexes

– Threads are working mostly independently
– There is a need to access common data structure

lock *l = alloc_and_init(); /* shared */
acquire(l);
access data
release(l);

– Locks only affect processors using them:
• If a thread accesses the data without doing the

acquire/release, locks by others will not help
– Semaphores generalize locks to allow the use of the

same locks across different processes

Mutexes in POSIX Threads
• To create a mutex:

#include <pthread.h>
pthread_mutex_t amutex =
PTHREAD_MUTEX_INITIALIZER;

// or pthread_mutex_init(&amutex, NULL);
• To use it:

int pthread_mutex_lock(amutex);
int pthread_mutex_unlock(amutex);

• To deallocate a mutex
int pthread_mutex_destroy(pthread_mutex_t *mutex);

• Multiple mutexes may be held, but can lead to problems:
thread1 thread2
lock(a) lock(b)
lock(b) lock(a)

• Deadlock results if both threads acquire one of their locks,
so that neither can acquire the second

deadlock

Summary of Programming with Threads

• POSIX Threads are based on OS features
– Can be used from multiple languages (need

appropriate header)
– Familiar language for most programs
– Ability to shared data is convenient

• OpenMP is commonly used today as an
alternative

Introduction to OpenMP
• What is OpenMP?

– Open specification for Multi-Processing
– “Standard” API for defining multi-threaded

shared-memory programs
– openmp.org – Talks, examples, forums, etc.

• High-level API
– Preprocessor (compiler) directives (~ 80%)
– Library Calls (~ 19%)
– Environment Variables (~ 1%)

A Programmer’s View of OpenMP
• OpenMP is	a	portable,	threaded,	shared-memory	programming

specification with	“light” syntax
– Exact	behavior	depends	on	OpenMP implementation!
– Requires	compiler	support	(C	or	Fortran)

• OpenMP will:
– Allow	a	programmer	to	separate	a	program	into	serial	regions
and	parallel	regions,	rather	than	concurrently-executing	
threads.

– Hide	stack	management
– Provide	synchronization	constructs

• OpenMP will	not:
– Parallelize	automatically
– Guarantee	speedup
– Provide	freedom	from	data	races

Programming	Model	– Concurrent	Loops

• OpenMP easily	parallelizes	loops
– Requires:	No	data	dependencies	(reads/write	or	
write/write	pairs)	between	iterations!

• Preprocessor	calculates	loop	bounds	for	each	thread	
directly	from	serial source

for(i=0; i < 25; i++)
{

printf(“Foo”);

}

#pragma omp parallel for

Programming	Model	– Loop	Scheduling

• Schedule Clause determines how loop iterations are
divided among the thread team
– static([chunk]) divides iterations statically between

threads
• Each thread receives [chunk] iterations, rounding as

necessary to account for all iterations
• Default [chunk] is ceil(# iterations / # threads)

– dynamic([chunk]) allocates [chunk] iterations per
thread, allocating an additional [chunk] iterations when a
thread finishes

• Forms a logical work queue, consisting of all loop iterations
• Default [chunk] is 1

– guided([chunk]) allocates dynamically, but [chunk] is
exponentially reduced with each allocation

Data	Sharing
•

PThreads:
• Global-scoped	
variables	are	shared

• Stack-allocated	
variables	are	private

OpenMP:
• shared variables	are	
shared

• private variables	are	
private

OpenMP Synchronization

– OpenMP Critical Sections
• Named or unnamed
• No explicit locks / mutexes

– Barrier directives
– Single-thread regions within parallel regions

• master, single directives

CUDA	NVIDIA

•

Programming	
Approaches

Libraries

“Drop-in”
Acceleration

Programming	
Languages

OpenACC	
Directives

Maximum FlexibilityEasily Accelerate
Apps

Development
Environment

Nsight IDE
Linux, Mac and Windows

GPU Debugging and
Profiling

CUDA-GDB
debugger

NVIDIA Visual
Profiler

Hardware	
Capabilities

GPUDirectSMX Dynamic
Parallelism

HyperQ

NVIDIA	GPU	Platform
•

*	Graphics	Double	Data	Rate	Synchronous	Dynamic	Random	Access	Memory	(DDR3	vs
DDR2:	larger	prefetch buffer,	ie 8	bits	instead	of	2	bits)

*

Peripheral	Component	
Interconnect	Express

Sample	Platforms

•

Render	
Output
Unit	(ROP)

Sample	Platforms

•

Distributed	
over	10	
Texture	
Processor	
Clusters

Sample	Platforms
•

How	to	program	GPU’s
•

Let’s	take	Vector	Addition	written	in	C	for	a	CPU:

How	to	get	the	GPU	involved
•

Memory	Spaces
•

Example
•

Example	continued
•

Example	continued:	VecAdd
•

Example	continued:	Threads
•

Example	continued:	Kernel	Invocation

•

Mapping	Threads	to	the	Hardware
•

Mapping	Threads	to	the	Hardware
•

GPU	Memory	Hierarchy	(Summary)
•

Other	Parallel	Programming	Paradigms

• Parallel	Functional	Programming
• MapReduce:	HADOOP
• Coordination	Languages:	Linda
• Platform	Specific:	OCCAM	(Transputer)

