
Parallel	Sorting



A	jungle

•



Illustration

https://www.youtube.com/watch?v=kPRA0W1kECg



(Sequential)	Sorting

• Bubble	Sort,	Insertion	Sort
– O	(	n2	)

• Merge	Sort,	Heap	Sort,	QuickSort
– O	(	n	log	n	)
– QuickSort best	on	average

• Optimal Parallel Time	complexity
– O	(	n	log	n	)	/	P
– If	P	=	N	then	O	(	log	n	)



Insertion	Sort
Insertion_Sort (A)

for i from 1 to |A| - 1
j = i
while j > 0 and A[j-1] > A[j]

swap A[j] and A[j-1]
j = j – 1

Return ( A )

Inherently	sequential	so	hard	to	parallelize	!!!!
è Only	through	pipelining	 can	speedup	be	realized



Pipelined	Insertion	Sort
•

Tpipelined =	2n,
with	n	processors,	
so	maximal	
speedup	=	n/4	– 3/4
(	wortcase
sequential	time	=	
(n-1)(n-2)/2	=	n2/2-
3n/2+2/2	)



Parallel	Merge	Sort
Merge_Sort (A)

n = |A|
halfway = floor(n/2)

DO	IN	PARALLEL
Merge_Sort (A[1]… A[halfway])
Merge_Sort (A[halfway+1]… A[n])

j = 1; current = 1
for i from 1 to halfway

while j ≤ n-halfway and A[halfway + j] < A[i]
X[current] = A[halfway + j]
j = j + 1; current = current+1

X[current] = A[i]
current = current+1

Return ( X )

halfway halfway + j ni

A



In	a	picture

•



Notes	Merge	Sort

• Collects	sorted	list	onto	one	processor,	
merging	as	items	come	together

• Maps	well	to	tree structure,	sorting	locally	on	
leaves,	then	merging	up	the	tree

• As	items	approach	root	of	tree,	processors	are	
dropped,	limiting	parallelism

• O	(	n	),	if	P	=	n	
(1+2+4+…+n/2+n)	=	n	(1+1/2+1/4	…	)	=	n.2	



Parallel	QuickSort
QuickSort (A)

if |A| == 1 then return A
i = rand_int (|A|)
p = A[i]
DO	IN	PARALLEL

L = QuickSort({a  A|a < p})
E = {a  A|a = p}
G = QuickSort({a  A|a > p})

Return ( L || E || G )

∈

∈

∈

∈



If	we	assume	that	the	pivots	are	chosen	such	that	L	and	
G	are	about	equal	in	size,	then

Sequential:	T	(n)	=	2T	(n/2)	+	O	(n)	=	O	(n	log	n)
In	fact	it	can	be	proven	that	this	always	holds!

For	parallel	execution the	choice	of	i is	crucial	for	load	
balance.	Even	more	importantly	we	would	like	to	
choose	multiple	pivots	(p-1)	at	the	same	time,	so	that
each	time	we	get	p	partitions which	can	be	executed	in	
parallel.	



P	partitions
• For	a	given	p	(number	of	pivots)	and	s	
(oversampling	rate),	first	select	at	random	
p*s	candidate	pivots	

for i from 1 to p*s

Cand[i] = rand_int (|A|)

• Sort the	list	of	candidate	pivots:	Cand[i]
• Choose	Cand[s],Cand[2*s]…Cand[(p-1)*s]
Find	a	good	value	for	the	oversampling	rate:	s	>	1,

è s	should	not	lead	to	very	long	sorting	times



Parallel	Radix	Sort
Instead	of	comparing	values:	COMPARE	DIGITS

Radix_Sort (A, b) # Assume	binary	representations	of	keys
for i from 0 to b-1

FLAGS = { (a>>i) mod 2 | a  A } 
NOTFLAGS = { 1-FLAGS[a] | a  A }
R_0 = SCAN (NOTFLAGS)
s_0 = SUM (NOTFLAGS)
R_1 = SCAN (FLAGS)
R = {if FLAGS[j] == 0 

then R_0[j]
else R_1[j] + s_0
| j  [0…|A|-1}

A = A sorted by R
Return ( A )

∈
∈

∈

(a>>i) mod 2: 
rightshift i times,	so	e.g.
01101>>2 mod2 =
00011 mod 2 = 1

So	(a>>i) mod 2 equals	the	
(i+1)th rightmost	bit	of	a



LSD/MSD	Radix	Sort

Instead	of	
(a>>i) mod 2

one	can	also	implements	Radix	Sort	with:
(a<<i) div 2^(b-1) 

The	first	implementation	is	called	least	
significant	digit	Radix	Sort	or	LSD	Radix	Sort
The	latter	on	is	MSD	Radix	Sort



Notes	Radix	Sort

ØSequential	time	complexity:
T(n)	=	O	(b.n),	

b	iterations,	each	iteration	O(n)
ØNote	that	b	≈	log	n,	so	a	total	of	O	(n	log	n)
ØInstead	of	single	digits	a	block	of	r	digits	can	
be	taken	each	time,	resulting	in	b/r iterations



Illustration	(LSD	Radix	Sort)

•



Sorting	of	each	selected	digit	in	Radix	
Sort,	with	Prefix	Sum	Based	Sorting

Each	element	i of	the	prefix	sum	array	has	the	
SUM	of	all	elements	which	index	is	smaller	than	i



What	is	the	relationship	with	sorting?

•

ØAll	bits	which	are	equal	to	0	are	flagged	with	a	1
ØCompute	Prefix	Sum	of	this	flag	array
Ø Store	all	flagged	(1)	entries	of	x[k]	in	the	location	indicated	by	the	
prefix	sum



Second	stage

•

ØAll	bits	which	are	equal	to	1 are	flagged	with	a	1
ØCompute	Prefix	Sum	of	this	flag	array
Ø Store	all	flagged	(1)	entries	of	x[k]	in	the	next	locations	indicated	
by	the	prefix	sum



What	about	parallel	execution?

• Computationally	the	sorting	algorithm	is	
reduced	to	computing	the	prefix	sum	arrays	
for	each	bit	ranking.

• However,	computing	these	prefix	sum	arrays	
seems	to	be	inherently	sequential.	Or	not?



Parallel	Execution	of	Prefix	Sums

Prefix_Sum (X) # X a n-bit array

for index from 0 to log n
DO	IN	PARALLEL	for	all	k
if k >= 2^index then
X[k] = X[k]+X[k-2^index]

X >> 1 #Shift all entries to the right
Return ( X )



Illustration	of	parallel	Prefix	Sums

•



Improving	Cache	Performance
Ø The	parallel	prefix	sum	algorithm	requires	the	whole	array	to	be	

fetched	at	each	iteration
Ø Bad	cache	performance
Ø Through	Tiling	Techniques	the	X	array	can	be	cut	into	slices	(tiles)	
Ø Once	every	number	of	iterations	re-tile	!!
Ø A	CUDA	implementation	of	the	overall	alg.	can	be	found	on	

https://github.com/debdattabasu/amp-radix-sort
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Bitonic Sorting

Based	on	bitonic sequences:

A[1],	A[2],	….	,	A[n-1],	A[n]	is	bitonic,	iff
there	is	a	j and	k such	that
• A[1]	…	A[j]	is	monotonic	increasing,	
• A[j]…A[k]	is	monotonic	decreasing,	
• A[k]…	A[n]A[1]!!	is	monotonic	increasing

OR	vise	versa



A	“better”	definition	of	Bitonic Sequence

A	bitonic sequence is	a	sequence	with	
A[1]<=	A[2]<=	….<=A[k]>=	…	>= A[n-1]>=A[n]	

for	some	k	(1<=k<=n),	
or	a	circular	shift	of	such	a	sequence.



In	a	picture

Bitonic:

Not	Bitonic

If	rotated:	Two	Peaks



A[1]>=	A[2]>=	….>=A[k]<=	…	<=A[n-1]<=A[n]	
leads	to	the	same	definition



Bitonic “Merge”
Bitonic_Merge (A) # A is a bitonic sequence

n = |A|
if n == 1 then return A
half_n = floor(n/2)
for i from 1 to half_n

c[i] = min(A[i],A[i+half_n])
d[i] = max(A[i],A[i+half_n])

DO	IN	PARALLEL	
Bitonic_Merge (c[1]…c[half_n])
Bitonic_Merge (d[1]…d[half_n])

Return ( )



Notes	Bitonic Merge

• Each	c and	d sequence	is	a	bitonic sequence	
again

• For	all	i: c[i] <= d[i]
• At	the	end	we	sorted	bitonic sequences	of	
length	1,	hence	a	sorted	sequence



Bitonic Merge	always	yields	bitonic sequences

•



Bitonic Merge	Network
•



Bitonic Merge	Network	(2)
•



Bitonic Merge	Network	(3)

•



Parallel	Bitonic Sort

Bitonic_Sort (A)

n = |A|

if n == 1 then return A
for i from 0 to log(n)

DO	IN	PARALLEL	for	all	k	=		m.2^i,	k	<	n
Bitonic_Merge (A[k]…A[k+2^i-1])*

Return ( )

*For	odd	values	of	m,	interchange	min	and	max



Notes	Bitonic Sort

• Each	iteration	creates	longer	and	longer	
bitonic sequences	

• In	the	last	iteration	the	whole	sequence	is	
bitonic and	the	final	bitonic merge	creates	a	
sorted	list



Bitonic Sort	Network

•

four bitonic lists of length 2 constituting 2 bitonic lists of length 4

2 Bitonic Merge Networks

4 Bitonic Merge Networks



Why	alternating	max/min?
Note	that	at	the	start	of	each	Bitonic Merge	Network	we	have	
two	Bitonic Sequences	which	constitutes	One	Bitonic
Sequence!!!	

If	one	of	these	sequences	is	(monotonic)	increasing	and	the	
other	is	(monotonic)	decreasing	then	this	is	always	the	case.	If	
both	are	increasing	or	decreasing	this	is	not	necessarily	the	
case,	i.e.

is	not	bitonic



Notes	Bitonic Sort	Network
• Assume	n	=	2^k
• The	bitonic merge	stages	have	1,	2,	3,…,k	steps	
each,	so	time	to	sort	is

T(n)	 =	1	+	2	+	…	+	k	=	k	(k-1)/2
=	O	(k2)	=	O	(log2 n)

• Each	step	requires	n/2	processors,	so	the	total	
number	of	processors	is	O	((n/2) log2 n)

• The	network	can	handled	multiple	pipelined list	
producing	a	sorted	list	each	time	step


