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1.4 Semantics of propositional logic

Voetbal speel je met het hoofd, want de bal is viugger dan de
benen.


http://liacs.leidenuniv.nl/~vlietrvan1/logica/

A slide from lecture 2:

1.4.3. Soundness of propositional logic

Definition 1.34.

If, for all valuations in which all ¢1, ¢o,...,¢n evaluate to T,
1 evaluates to T as well, we say that
¢17¢27"'7¢n|:¢

holds and E the semantic entailment relation.



Theorem 1.35. (Soundness)

Let ¢1,0o,...,0n and Y be propositional logic formulas.
If

¢17¢27“‘7¢n|_¢

is valid, then

¢17¢27"'7§bn |:¢
holds.

Proof: By mathematical induction (course-of-values) on the
length of the proof of

¢17¢27"'7¢’n'_¢



M(k):

For all sequents

¢17¢27“‘7¢n|_¢
(n > 0) which have a proof of length k, it is the case that
¢17¢27"'7¢n':¢

holds.



M(k):

For all sequents

¢17¢27"'7¢’n '_w
(n > 0) which have a proof of length k, it is the case that
¢17¢27"'7¢n |:¢

holds.

Base case. ..



M(k):

For all sequents

¢17¢27"'7¢n |_¢
(n > 0) which have a proof of length k, it is the case that
¢17¢27°°°7¢n 'Z%D

holds.

Suppose that M (k) is valid for all k£ < kg (induction hypothesis)

Now, consider a sequent with a proof of length kg 4 1.



Induction step

Complication:

pANg—T premise

D assumption
q assumption
PAq A 2,3

T —e 1,4
q—r — 1 3—5
p— (qg—r) — i 2—6
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Induction step

Solution:
1 pAqg—T premise
2 P premise
3 4 assumption
4 DPAN(q Ai 2,3
5 T —e 1,4

6 q—T — 1 3—5



¢17¢27"'7¢n|_¢

P1, P2, ... Pn ML Vo G1, P2y, PnyM1 E Y P11, P2y, Py E Y

$1,P2,-- -, Pn F M1 V12 G1, P2,y Py F P1, P2y oy Py 2 F

ey el
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A slide from lecture 4:

Basic rules of natural induction

introduction elimination
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A slide from lecture 4:

Basic rules of natural induction

introduction elimination
i
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A slide from lecture 4:

Some useful derived rules
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Exercise 1.4.11.
For the soundness proof of Theorem 1.35 on page 46,

(a) explain why we could not use mathematical induction,
but had to resort to course-of-values induction

(b) give justifications for all inferences that were annotated with
‘why?’

(c) complete the case analysis ranging over the final proof rule
applied:
inspect the summary of natural deduction rules in the foregoing
slides to see which cases are still missing.
Do you need to include derived rules?
What about the copy rule?
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1.4.4. Completeness of propositional logic

If
¢17¢27"°7¢n|:¢

is valid, then

¢17¢27"'7¢n '_¢
holds.
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1.4.4. Completeness of propositional logic

If
¢17¢27"'7¢n|:¢

Is valid, then

Step 1:  F o1 = (p2 = (63 = (.. (¢n = ) ...)))
Step 20 F @1 = (@2 = (@3 = (.. (¢n =) ...)))
Step 3:  ¢1,¢2,...,on Y

15



P1, P2, - -

, P =

=@

16



Step 1:

Definition 1.36.
A formula of propositional logic ¢ is called a tautology
iff it evaluates to T under all its valuations, i.e., iff E ¢.
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Step 1:

If
¢17¢27"'7¢n|:¢

Is valid, then

Step 1:  F o1 = (p2 = (63 = (.. (¢n = ) ...)))
Step 20 F @1 = (@2 = (@3 = (.. (¢n =) ...)))
Step 3:  ¢1,¢2,...,on Y



Step 3:

If
¢17¢27"'7¢n|:¢

Is valid, then

Step 1:  F o1 = (p2 = (63 = (.. (¢n = ) ...)))
Step 20 F @1 = (@2 = (@3 = (.. (¢n =) ...)))
Step 3:  ¢1,¢2,...,on Y



Step 2:

If
¢17¢27"'7¢n|:¢

is valid, then

Step 1. F o1 — (¢2 = (93 = (.. (¢n — ) ...)))
Step 2: F¢1 = (¢2 = (¢3 = (.. (P = ) ...)))
Step 3: ¢17¢27°°'7¢n|_¢

Theorem 1.37.
If En holds, then Fn is valid.
In other words, if n is a tautology, then n is a theorem.
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‘Encode’ each line in the truth table of n as a sequent.

Proposition 1.38.

Let ¢ be a formula such that py,po,...,pm are its only proposi-
tional atoms.

Let [ be any line in ¢'s truth table.

For all 1 <1 < m, let p; be p; if the entry in line [ of p; is T,

otherwise p; is —p;.
Then we have

1. p1,po,...,pm F @ is provable if the entry for ¢ in linel is T

2. p1,pP2,...,pm = ¢ is provable if the entry for ¢ in line l is F
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Example.

3
|

provable sequent

TN TN RE
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I I S [
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T NN NN

P1,P2,P3,P4,P5,P6;P7 - Qb

P1, P2, P3, P4, 7P5, "P6, P7 - @

pP1, P2, P3, P4, P5,P6, 'P7 - ¢
—P1, P2, 'P3; P4, P55, P65 'PT7 - Qb

P1,P2,P3, P4, P5, 'P6, 'P7 - _'¢
—p1,P2,P3, P4, P5, P6, P7 = TP
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Proposition 1.38.
Let ¢ be a formula such that py,po,...,pm are its only proposi-

tional atoms.
Let [ be any line in ¢'s truth table.
For all 1 <1 < m, let p; be p; if the entry in line [ of p; is T,

otherwise p; is —p;.
Then we have

1. p1,p2,...,pm F ¢ is provable if the entry for ¢ in linel is T
2. p1,p2,...,pm F —¢ is provable if the entry for ¢ in line [ is F

Proof. by structural induction on formula ¢

Base case. ..
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Proposition 1.38.
Let ¢ be a formula (...)
Then we have

1. p1,p2,...,pm F ¢ is provable if the entry for ¢ in linelis T

2. p1,p2,...,pm @ is provable if the entry for ¢ in line [ is F

Inductive step:

Suppose that Proposition 1.38 is valid for all formulas ¢ with
height at most kg (induction hypothesis).

Now, consider a formula ¢ with height kg 4 1.
If ¢ =—¢1...
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