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Abstract. We analyse transports between leaves in an edge-weighted
tree. We prove under which conditions there exists a transport match-
ing the weights of a given tree. We use this to compute minimum and
maximum values for the transport between a given pair of leaves.

1 Introduction

You have been approached by a spy agency to determine the amount of contraband
goods that are being traded among several nefarious countries. After being shipped
from its country of origin, each container of goods is routed through at least
one neutral port. At the port, the containers are stored in a warehouse before
being sent on their way, so you cannot trace individual containers from their
country of origin to their final destination. Satellite cameras can tell you the
number of containers travelling in each direction on each leg of the journey.
They cannot distinguish individual containers, nor do you have information on
the times individual containers have been observed. You know, however, that
every container takes the shortest possible route to its destination.

The task is to determine both the maximum and minimum number of contain-
ers that could have been travelling from one country to another. The transport
network that is observed is an unrooted tree, with countries as leaves and ports
as internal nodes. For each edge the number of containers is given in two direc-
tions. You know from the description above that no container leaves a port in
the direction it came from.

This is the description of one of the problems at the Benelux Algorithm Pro-
gramming Contest 2006, which was held in Leiden on 21 October 2006, see
www.bapc2006.nl. The name of the problem was High Spies . The problem and
some phrases in its description were taken from [Shasha, 2003].

We want to emphasize that High Spies is not just a maximum network flow
problem, to which we can apply, e.g., the well-known Ford-Fulkerson algorithm
(see [Ford and Fulkerson, 1957]). We do not so much consider networks with
(maximum) capacities on the edges, but networks with numbers (of containers)
on the edges that are actually observed , meaning that the numbers must really
be met by the transport. Moreover, no container is allowed to travel from one
node to another and back again.
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Fig. 1. A transport network with six countries and three ports

Consider, for example the network depicted in Fig. 1, and suppose we are
interested in the transport from country 1 to country 4. The (standard) maxi-
mum flow from 1 to 4 consists of four containers, as this is the minimum number
observed on the route from 1 to 4. It is, however, not possible to send four con-
tainers along this route. In that case, in port 6, one of the containers arriving
from country 2 would be forced to return, which is forbidden.

Similarly, one might think that the minimum flow from 1 to 4 has value 0.
Indeed, one may send the five containers leaving country 1 to countries 2, 5, 7
and 9. 1 However, in that case, at least one of the containers arriving at port 3
from port 8 would be forced to return.

In this paper, we present and analyse an algorithm for a generalized version
of High Spies. In this version, the transport observed between two neighbouring
nodes of the tree may be any non-negative real number.

The intuition behind the algorithm is simple. For each port on the (unique)
route from a certain country (the source) to another country (the target), it
determines the minimum and maximum number of containers that can be passed
on from the direction of the source in the direction of the target. The minimum
number results from passing on as many containers as possible in directions
different from that of the target. In all this, we make sure that no container
entering the port has to go back in the direction it came from. We use the
(local) minima and maxima from the individual ports to compute the (global)
minimum and maximum number of containers transported from source to target.

The paper is organized as follows. In Sect. 2, we model the problem in terms
of weighted trees. In Sect. 3 and 4, we analyse which weighted trees actually
correspond to valid transports. We will see that global conditions for this can
be translated into easily checkable, local conditions. We need these conditions
to justify our algorithm, which we describe in Sect. 5. There, we use the local
conditions to determine the local maxima and minima just mentioned, and we
combine these into a global solution. Finally, we make some concluding remarks,
including some more remarks about the use of standard max-flow algorithms to
solve the problem.

1 Also this flow can be found with a standard max-flow algorithm, by introducing a
special target node, which is only reachable from countries 2, 5, 7 and 9.
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2 Problem Model

An unrooted tree can be denoted by an ordered pair T = (V, E), where V is the
(non-empty) set of nodes, and E is the set of edges of the tree. In High Spies,
the direction of edges is important. Therefore, we consider an edge as an ordered
pair of nodes (i, j). To reflect the undirected nature of the tree as a whole, we
have (i, j) ∈ E, if and only if (j, i) ∈ E.

Definition 1. A weighted tree is an ordered pair (T, c), where T = (V, E) is an
unrooted tree and c is a non-negative function (a weight function) on E.

The weight c(i, j) can be considered as the observed number of containers travel-
ling from node i to node j. Note, however, that it does not have to be an integer
number.

From now on, we assume that a tree T = (V, E) contains at least two nodes.
This allows for the identification of leaves and internal nodes in the tree. For
ease of notation, we also assume that V = {1, . . . , n} for some n ≥ 2. We let
Leaves(T ) denote the set of leaves of T .

Definition 2. A transport Tr on an unrooted tree T is a non-negative function
on the ordered pairs (l1, l2) with l1, l2 ∈ Leaves(T ) and l1 �= l2.

The number Tr(l1, l2) can be considered as the number of containers shipped
from leaf (country) l1 to leaf (country) l2 via the edges of the tree. Despite
this interpretation, Tr(l1, l2) does not have to be an integer number. Note that
Tr(l1, l2) is not necessarily equal to Tr(l2, l1).

We are interested in the total transport over a certain edge (i, j) of the tree.
This total transport comes from the leaves on one side of (i, j) and goes to the
leaves on the other side of (i, j). We now define this formally.

Each edge (i, j) of the tree is a ‘cut’. It partitions the set V of nodes into two
subsets: the nodes on i’s side of the tree, and the nodes on j’s side of the tree.
Let us call these subsets of nodes Left(i, j) and Right(i, j), respectively. This
partitioning induces a partitioning of Leaves(T ) into a subset of leaves on i’s
side of the tree, and a subset of leaves on j’s side of the tree. Let us call these
subsets LLeaves(i, j) and RLeaves(i, j), respectively. Clearly, LLeaves(i, j) =
RLeaves(j, i) and RLeaves(i, j) = LLeaves(j, i).

For example, in the tree in Fig. 1, LLeaves(6, 3) = {1, 2} and RLeaves(6, 3) =
{4, 5, 7, 9}.
Definition 3. A matching transport Tr on a weighted tree (T, c) with T = (V, E)
is a transport on T , such that for each edge (i, j) ∈ E,

∑

l1∈LLeaves(i, j)

∑

l2∈RLeaves(i, j)
Tr(l1, l2) = c(i, j) . (1)

Indeed, if we assume that the containers travelling from one leaf to another take
the shortest route in the tree (i.e., they do not travel in two directions over the
same undirected edge), and that each container observed is on its way from one
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Fig. 2. Two weighted trees that do not have a matching transport

leaf to another (i.e., its origin or destination is not an internal node), then (1)
must hold. Each container travelling from a leaf in LLeaves(i, j) to a leaf in
RLeaves(i, j) passes edge (i, j) exactly once, and there are no other containers
travelling along this (directed) edge.

For example, a matching transport Tr for the tree in Fig. 1 is given by

Tr(1, 2) = 2, Tr(1, 4) = 2, Tr(1, 5) = 1, Tr(2, 1) = 1, Tr(2, 9) = 1,

Tr(4, 7) = 1, Tr(5, 7) = 1, Tr(7, 4) = 1, Tr(9, 4) = 2

(and Tr(l1, l2) = 0 for pairs of leaves (l1, l2) not mentioned).
Now, the problem High Spies can be rephrased as follows: given a weighted

tree for which at least one matching transport exists, and given two different
leaves l1 and l2 of this tree, determine the minimum value and the maximum
value for Tr(l1, l2) over all matching transports Tr on the tree.

3 Existence of a Matching Transport

Before we start solving High Spies, we consider the question under which con-
ditions a weighted tree actually permits a matching transport. We have already
seen a matching transport for the weighted tree from Fig. 1. If we slightly modify
the tree, then there may not exist a matching transport. For example, there do
not exist matching transports for the two weighted trees in Fig. 2, in which we
have only altered the weights on edges between nodes 3 and 8.

It is intuitively clear that there cannot be a matching transport for the left
tree, becauses nodes 3 and 8 do not satisfy the graph analogue of Kirchhoff’s
current law: the total weight on the edges entering node 3 is unequal to the total
weight on the edges leaving that node, and similarly for node 8.

Although the right tree does satisfy Kirchhoff’s law, it is also intuitively clear
that there cannot be a matching transport for that tree. The weight 7 on edge
(3, 8) should be carried along to nodes 4 and 5. However, the total weight on
the edges (8, 4) and (8, 5) is only 6. Also, the weight 3 on edge (8, 3) must have
arrived at node 8 from nodes 4 and 5. However, the total weight on the edges
(4, 8) and (5, 8) is only 2.
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In Sect. 4, we prove that these are exactly the types of arguments determining
the existence of a matching transport on a weighted tree. For that purpose, we
reformulate the (global) definition of a matching transport into local terms.

Definition 4. Let (T, c) be a weighted tree, and let j be an internal node of T .
Let h1, . . . , hm for some m ≥ 2 be the neighbours of j in T . Then j is a transport
node, if there exists an m × m matrix A = (ai,k) satisfying

ai,k ≥ 0 (i, k = 1, . . . , m) (2)
ai,i = 0 (i = 1, . . . , m) (3)
∑m

k=1 ai,k = c(hi, j) (i = 1, . . . , m) (4)
∑m

i=1 ai,k = c(j, hk) (k = 1, . . . , m) . (5)

In this case, the matrix A is called a witness matrix for node j.

Intuitively, a witness matrix determines the transport on a local scale. The entry
ai,k can be considered as the number of containers that is shipped from node hi

to node hk (via node j).
For example, let us consider node j = 6 in the tree from Fig. 1. This node,

whose neighbours are nodes 1, 2 and 3, is a transport node. If we let h1 = 1,
h2 = 2 and h3 = 3, then a witness matrix is

A =

⎛

⎝
0 2 3
1 0 1
0 0 0

⎞

⎠
c(1, 6) = 5
c(2, 6) = 2
c(3, 6) = 0

c(6, 1) = 1 c(6, 2) = 2 c(6, 3) = 4

Indeed, when we calculate the sums of the individual rows and columns of A,
we obtain the weights of the corresponding edges in the tree, as indicated to the
right of the matrix and below the matrix.

We now establish that local properties guarantee the existence of a (global)
matching transport:

Theorem 5. Let (T, c) be a weighted tree. There exists a matching transport on
(T, c), if and only if each internal node of (T, c) is a transport node.

Proof. =⇒ Assume that there exists a matching transport Tr on (T, c). Then
let j be an arbitrary internal node of T and let h1, . . . , hm for some m ≥ 2 be
the neighbours of j in T . Then the m × m matrix A = (ai,k) defined by

ai,i = 0 (i = 1, . . . , m)

ai,k =
∑

l1∈LLeaves(hi, j)

∑

l2∈RLeaves(j, hk)
Tr(l1, l2) (i, k = 1, . . . , m; i �= k)

is a witness for j being a transport node.

⇐= Assume that each internal node of (T, c) is a transport node. We use
induction on the number p of internal nodes to prove that there exists a matching
transport Tr on (T, c).
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(a)

Tr1(1, 3) = 3
︷ ︸︸ ︷

Tr1(2,3) = 1
︷ ︸︸ ︷

︸ ︷︷ ︸
Tr2(6, 4) = 2

︸ ︷︷ ︸
Tr2(6, 5) = 1

︸ ︷︷ ︸
Tr2(6, 9) = 1

Tr(1, 4) Tr(1, 5) Tr(2, 9)

Total=c(6, 3) = 4

Total=c(6, 3) = 4

(b)

Fig. 3. Constructions used in the proof of Theorem 5. (a) Subtrees T1 (left) and T2

(right) resulting when we break up the weighted tree from Fig. 1. (b) Greedy distribu-
tion of values Tr1(l1, 3) and Tr2(6, l2) over values Tr(l1, l2).

If p = 1, then T is a ‘star graph’. Let j be the only internal node, and let
h1, . . . , hm for some m ≥ 2 be the neighbours of j. These neighbours are exactly
all leaves of the tree. By assumption, j is a transport node. The m × m matrix
A = (ai,k) which is a witness for this, directly defines a matching transport:

Tr(hi, hk) = ai,k (i, k = 1, . . . , m; i �= k) .

Induction step. Let p ≥ 1, and suppose that for every weighted tree (T, c)
with at most p internal nodes, each of which is a transport node, there exists
a matching transport on (T, c) (induction hypothesis). Now consider a weighted
tree (T, c) with p+1 internal nodes, each of which is a transport node. Let i and
j be two arbitrary adjacent, internal nodes.

We use the edge (i, j) to break up (T, c) into two smaller trees with some over-
lap. Let T1 be the subtree of T consisting of node j and all nodes in Left(i, j),
together with the edges connecting these nodes. Let T2 be the subtree of T con-
sisting of node i and all nodes in Right(i, j), together with the edges connecting
these nodes. The weight functions c1 and c2 of T1 and T2 are equal to c, restricted
to T1 and T2, respectively. In Fig. 3(a), we have illustrated this construction for
edge (6, 3) of the tree from Fig. 1.

Then node j is a leaf in T1 and T1 contains at most p internal nodes. Moreover,
each internal node in T1 is also an internal node in T , with the same neighbours
and with the same weigths on the edges to and from these neighbours. Conse-
quently, each internal node of T1 is a transport node, simply because it is one
in T . By the induction hypothesis, there exists a matching transport Tr1 on
(T1, c1). Analogously, there exists a matching transport Tr2 on (T2, c2).

These two matching transports can be combined into one matching transport
Tr on (T, c). For pairs of leaves in T at the same side of edge (i, j), Tr simply
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inherits the value of Tr1 or Tr2. For pairs of leaves in T at different sides of edge
(i, j), we observe that (for a transport from left to right)

∑

l1∈LLeaves(i, j)
Tr1(l1, j) = c(i, j) =

∑

l2∈RLeaves(i, j)
Tr2(i, l2), (6)

as Tr1 and Tr2 are matching transports on T1 and T2, respectively. We now
distribute every value Tr1(l1, j) and every value Tr2(i, l2) over values Tr(l1, l2)
(and analogously from right to left). This can be done in a greedy way, as follows.

We take an arbitrary ordering of the values Tr1(l1, j) for l1 ∈ LLeaves(i, j),
and partition the total quantity c(i, j) according to these values. We label each
resulting fragment with the corresponding leaf l1. We also take an arbitrary
ordering of the values Tr2(i, l2) for l2 ∈ RLeaves(i, j), and partition the same
total quantity c(i, j) according to these values, again labelling the fragments
with the corresponding leaves. The resulting, double labelling determines Tr.

For example, let us consider matching transports Tr1 and Tr2 for the trees T1

and T2 in Fig. 3(a), given by

Tr1(1, 2) = 2, Tr1(2, 1) = 1, Tr1(1, 3) = 3, Tr1(2, 3) = 1 and
Tr2(6, 4) = 2, Tr2(6, 5) = 1, Tr2(6, 9) = 1, Tr2(4, 7) = 1,

Tr2(5, 7) = 1, Tr2(7, 4) = 1, Tr2(9, 4) = 2,

respectively. The values Tr1(l1, l2) with l1, l2 ∈ {1, 2} and l1 �= l2 are inherited
by Tr, and similarly for Tr2(l1, l2) with l1, l2 ∈ {4, 5, 7, 9} and l1 �= l2.

Figure 3(b) illustrates how the values Tr1(1, 3) and Tr1(2, 3) (in this order)
and the values Tr2(6, 4), Tr2(6, 5) and Tr2(6, 9) (in this order) are distributed
over Tr(1, 4) = 2, Tr(1, 5) = 1 and Tr(2, 9) = 1. It should be obvious from the
picture and (6) that this algorithm always yields a valid matching transport.

Note that in this example, edge (3, 6) has weight 0. so that Tr1(3, l1), Tr2(l2, 6)
and Tr(l2, l1) must be 0 for all l1 ∈ LLeaves(6, 3) and l2 ∈ RLeaves(6, 3).

Note also that there usually exist different distributions of Tr1(l1, j) and
Tr2(i, l2) over values Tr(l1, l2). For example, if we apply the same greedy al-
gorithm to a different ordering of the values Tr1(l1, j) and/or to a different
ordering of the values Tr2(i, l2), then we may obtain a different distribution. ��

4 Conditions for Being a Transport Node

By Theorem 5, in order to decide whether or not a matching transport for a
weighted tree exists, it suffices to check locally if each internal node is a transport
node. By definition, an internal node j is a transport node, if and only if there
exists a witness matrix A, which matches the weights c(i, j) and c(j, i) for all
neighbours i of j.

Instead of actually constructing such a witness matrix, we now prove that
such a witness matrix exists, if and only if the weights c(i, j) and c(j, i) satisfy
certain conditions. Then to check if node j is a transport node, we only have to
check these conditions.
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In this section and in Theorem 11, we consider individual internal nodes j,
together with their neighbours and a weight function c on the edges between j
and its neighbours. We also use the terms ‘transport node’ and ‘witness matrix’,
as if they have been defined for this local context. The results that we obtain,
however, can be applied in the context of complete weighted trees. We will do
that at the end of Sect. 5.

In Definition 4, we denoted the neighbours of an internal node j by h1, . . . , hm

for some m ≥ 2. From now on, for notational convenience, we assume that these
neighbours are nodes 1, . . . , m, respectively.

Lemma 6. If node j is a transport node, then
∑m

i=1 c(i, j) =
∑m

k=1 c(j, k), (7)
c(i, j) ≤ ∑

k �=i c(j, k) (i = 1, . . . , m) and (8)
c(j, k) ≤ ∑

i�=k c(i, j) (k = 1, . . . , m) . (9)

Equation (7) is Kirchhoff’s law, meaning that the total weight entering node j
equals the total weight leaving node j. Equation (8) expresses the fact that the
weight coming in from a neighbour i can go out to the other neighbours of node
j. Finally, (9) expresses the fact that the weight going out to a neighbour k can
have come from the other neighbours of node j. Exactly these equations were
violated by nodes 3 and 8 in the weighted trees in Fig. 2.

Before we prove Lemma 6, we show that there is some redundancy in (7)–(9).
For i0 = 1, . . . , m, let

Marginc(i0, j) =
∑

k �=i0
c(j, k) − c(i0, j) and

Marginc(j, i0) =
∑

i�=i0
c(i, j) − c(j, i0) .

Hence, Marginc(i0, j) and Marginc(j, i0) denote the differences between the right
hand side and the left side of (8) and (9), respectively. If the weight function c
is clear from the context, we will simply write Margin(i0, j) and Margin(j, i0).
We then have:

Lemma 7. If (7) holds for node j, then for i0 = 1, . . . , m, Margin(i0, j) =
Margin(j, i0).

This result follows directly from the definitions and (7). It implies in particular
that if (7) holds, then (8) and (9) are equivalent. Therefore, in the rest of the
paper, when we have to prove that (7)–(9) are valid for an internal node j and
a weight function c, we will not mention (9).

Proof of Lemma 6. Assume that node j is a transport node. Then by defini-
tion, there exists an m × m matrix A = (ai,k) satisfying (2)–(5).

When we add up all entries of A, row by row or column by column, we find

m∑

i=1

c(i, j) =
m∑

i=1

m∑

k=1

ai,k =
m∑

k=1

m∑

i=1

ai,k =
m∑

k=1

c(j, k) .
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Fig. 4. Tree resulting from the tree in Fig. 1, if we assign a quantity a = 0.5 from edge
(5, 8) to edge (8, 4)

Indeed, (7) holds. Let i0 be an arbitrary neighbour of j. Then

c(i0, j) =
m∑

k=1

ai0,k =
∑

k �=i0

ai0,k ≤
∑

k �=i0

(
m∑

i=1

ai,k) =
∑

k �=i0

c(j, k) .

Hence, also (8) holds. ��
At first glance, it is not obvious that Lemma 6 can be reversed. That is, that if
(7)–(9) hold for an internal node j, then j is a transport node. In particular, it
is imagineable that for each individual neighbour i of j, the weight on edge (i, j)
can be carried along to the other neighbours of j, but that this is not possible
for all neighbours of j simultaneously. Simply, because the weights on incoming
edges (i, j) for different neighbours i are competing for the same outgoing edges
(j, k).

For example, let j be node 8 in the tree from Fig. 1. In Fig. 4 we have
depicted the tree resulting from assigning a quantity a = 0.5 from the incoming
edge (5, 8) to the outgoing edge (8, 4). Now, the weight on edge (3, 8) can no
longer be passed on to the other neighbours of node 8.

We will see that this problem can be avoided, and that we can indeed reverse
Lemma 6. First, however, we state a result on the values of Margin(i, j) for
competing edges (i0, j) and (i1, j), which follows directly from the definitions
and (7).

Lemma 8. Assume that (7)–(9) hold for node j. Let i0 and i1 be two different
neighbours of j. Then

Margin(i0, j) + Margin(i1, j) =
∑

i�=i0,i1

c(i, j) +
∑

k �=i0,i1

c(j, k) . (10)

We now state the converse of Lemma 6 and provide its proof.

Lemma 9. If (7)–(9) hold for node j, then j is a transport node.

Proof. Assume that c satisfies (7)–(9). We prove that we can find an m × m
matrix A = (ai,k) satisfying conditions (2)–(5). If this is true, then node j is a
transport node.
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We use induction on the number pc of weights on the incoming and outgoing
edges of j, which are strictly positive.

If pc = 0, then for i = 1, . . . , m, c(i, j) = 0, and for k = 1, . . . , m, c(j, k) = 0.
It is easily verified that for this case, the m × m matrix A = (ai,k) with all
0-entries satisfies conditions (2)–(5).

Induction step. Let p ≥ 0, and suppose that for every non-negative weight
function c on the incoming and outgoing edges of j, which satisfies (7)–(9) and for
which pc ≤ p, we can find an m×m matrix A as specified (induction hypothesis).
Now, consider a non-negative weight function c on the same edges and satisfying
the same conditions, with pc = p + 1.2

Without loss of generality, assume that c(i0, j) > 0 for some neighbour i0 of
j. Let k0 be an arbitrary neighbour of j which satisfies k0 �= i0 and c(j, k0) > 0.
By (8), such a neighbour exists.

We now proceed to assign a maximum quantity a of the weight c(i0, j) of
the incoming edge (i0, j) to the outgoing edge (j, k0). In order to specify a, we
introduce the following quantity:

MinMargin = min
i�=i0,k0

Marginc(i, j) .

Let i1 �= i0, k0 be a neighbour of j for which this value is achieved. If m = 2,
then MinMargin is set to infinity and i1 is not defined.

Obviously, the value a is bounded by c(i0, j) and c(j, k0). It is, however, also
bounded by MinMargin. If we let a be larger than MinMargin, then the total
weight on outgoing edges, that is available to the incoming edge (i1, j) would
become smaller than c(i1, j). We therefore set

a = min
(
c(i0, j), c(j, k0), MinMargin

)
.

We now distinguish two cases:

• If a = c(i0, j) or a = c(j, k0), then we define a new weight function c′ by
subtracting a from c(i0, j) and c(j, k0) and leaving all other weights unchanged.

It is easily verified that c′ is non-negative and satisfies (7)–(9). Moreover, as
either c′(i0, j) = 0, or c′(j, k0) = 0 (or both), pc′ ≤ p. Hence, by the induction
hypothesis, there exists an m×m matrix A′ = (a′

i,k) satisfying conditions (2)–(5)
for the weight function c′. It follows immediately that the m × m matrix
A = (ai,k) defined by

ai0,k0 = a′
i0,k0

+ a

ai,k = a′
i,k ( (i, k) �= (i0, k0) )

satisfies the same conditions for the original weight function c.
• If a = MinMargin and MinMargin < min(c(i0, j), c(j, k0)), then in particular
m ≥ 3 and node i1 is defined. Now, we define a new weight function c′ by

c′(i0, j) = 0
2 Note that, because of (7), it is impossible that pc = 1. This, however, does not harm

our argument.
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Fig. 5. Old (left) and new (right) weights for the second case in the proof of Lemma 9

c′(j, k0) = c(j, k0) − a

c′(j, i1) = c(j, i1) − (c(i0, j) − a)
c′(i, j) = c(i, j) (i �= i0)
c′(j, k) = c(j, k) (k �= k0, i1)

(see Fig. 5). By definition and by Lemma 7,

a = Marginc(i1, j) = Marginc(j, i1) =
∑

i�=i1

c(i, j) − c(j, i1) ≥ c(i0, j) − c(j, i1) .

Hence, c′(j, i1) ≥ 0, which implies that c′ is non-negative for every edge.
It is easily verified that the weight function c′ satisfies (7). It remains to be

proved that c′ also satisfies (8), i.e., that Marginc′(i2, j) ≥ 0 for each neighbour
i2 of j. For this, we can distinguish four subcases: i2 = i0, i2 = i1, i2 = k0 and
i2 �= i0, i1, k0. The proofs for the first two cases are straightforward. The proofs
for the last two cases are more involved, but similar. We give the details for the
case that i2 �= i0, i1, k0:

Marginc′(i2, j) =
∑

k �=i2

c′(j, k) − c′(i2, j)

=
∑

k �=i2

c(j, k) − a − (c(i0, j) − a) − c(i2, j) = Marginc(i2, j) − c(i0, j) .

By Lemma 8,

Marginc(i2, j) + Marginc(i1, j) = Marginc(i2, j) + a

=
∑

i�=i2,i1

c(i, j) +
∑

k �=i2,i1

c(j, k) ≥ c(i0, j) + c(j, k0) > c(i0, j) + a .

This implies that Marginc′(i2, j) ≥ 0.

Because by definition, c′(i0, j) = 0, we have pc′ ≤ p. Hence, by the induction
hypothesis, there exists an m×m matrix A′ = (a′

i,k) satisfying conditions (2)–(5)
for the weight function c′. It follows immediately that the m × m matrix
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A = (ai,k) defined by

ai0,k0 = a′
i0,k0

+ a

ai0,i1 = a′
i0,i1 + (c(i0, j) − a)

ai,k = a′
i,k ( (i, k) �= (i0, k0), (i0, i1) )

satisfies the same conditions for the original weight function c. ��
When we combine Lemma 6 and Lemma 9, we obtain

Theorem 10. Node j is a transport node, if and only if (7)–(9) hold for j.

5 Minimum and Maximum Transport

A transport node in a weighted tree may have many different witness matrices.
We examine the minimum and maximum values for each of the entries in these
witness matrices.

Theorem 11. Assume that node j is a transport node and that A = (ai,k) is a
witness matrix for this. Let i0 and k0 be two arbitrary, different neighbours of j.
Then

ai0,k0 ≥ max
(

0, c(i0, j) −
∑

k �=i0,k0

c(j, k), c(j, k0) −
∑

i�=i0,k0

c(i, j)
)

and (11)

ai0,k0 ≤ min
(

c(i0, j), c(j, k0), min
i�=i0,k0

Marginc(i, j)
)
, (12)

and each value satisfying these equations can be achieved.

It would be a nice exercise to prove that the right-hand side of (11) is at most as
large as the right-hand side of (12), without using these equations themselves.

Note that by (4) and Lemma 7, (11) is equivalent to the following inequality:
∑

k �=k0

ai0,k ≤ min
(

c(i0, j),
∑

k �=i0,k0

c(j, k), Marginc(k0, j)
)

. (13)

Proof. We first prove (11). By definition, ai0,k0 ≥ 0. By successively applying
(3), (2) and (5), we find

∑

k �=k0

ai0,k =
∑

k �=i0,k0

ai0,k ≤
∑

k �=i0,k0

m∑

i=1

ai,k =
∑

k �=i0,k0

c(j, k) .

Hence, by (4), ai0,k0 ≥ c(i0, j) −
∑

k �=i0,k0
c(j, k). Analogously, we find ai0,k0 ≥

c(j, k0) −
∑

i�=i0,k0
c(i, j).

In the proof of Lemma 9, we have seen that also (12) holds.

We now prove that each value ai0,k0 = a satisfying (11) and (12) can be
achieved. If m = 2, then

∑
k �=i0,k0

c(j, k) =
∑

i�=i0,k0
c(i, j) = 0. Hence, by (11)
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and (12), the only possible value for ai0,k0 is ai0,k0 = c(i0, j) = c(j, k0). The
existence of a witness matrix A implies that this value can indeed be achieved.

Now assume that m ≥ 3 and let ai0,k0 = a be an arbitrary value satisfying
(11) and (12).

By Lemma 6, we know that the weight function c satisfies (7)–(9). Let the
weight function c′ be defined by

c′(i0, j) = c(i0, j) − a

c′(j, k0) = c(j, k0) − a

c′(i, j) = c(i, j) (i �= i0)
c′(j, k) = c(j, k) (k �= k0) .

Because a ≤ c(i0, j) and a ≤ c(j, k0), c′ is non-negative. Further, c′ satisfies (7),
because c does. Finally, because a ≤ mini�=i0,k0 Marginc(i, j), Marginc′(i, j) ≥ 0
for i = 1, . . . , m. Hence, c′ also satisfies (8). By Theorem 10, j is still (in the
context of the new weight function c′) a transport node.

Now, let k1, . . . , km−2 be the neighbours of j different from i0 and k0. We
must assign the remaining weight c′(i0, j) = c(i0, j) − a on the incoming edge
(i0, j) to the outgoing edges (j, k1), . . . (j, km−2). That is, we must find a witness
matrix A′ = (a′

i,k) for j and c′ for which a′
i0,k0

= 0.
We can prove that such a matrix exists by induction on the number of neigh-

bours k ∈ {k1, . . . , km−2} for which Marginc′(k, j) < c′(i0, j). The intuition be-
hind this is, that if for some neighbour kl with 1 ≤ l ≤ m− 2, Marginc′(kl, j) ≥
c′(i0, j), then after any partitioning of c′(i0, j) over a′

i0,k1
, . . . , a′

i0,km−2
, we can

still pass the weight c′(kl, j) to the edges (j, k) with k �= kl. If, on the other
hand, Marginc′(kl, j) < c′(i0, j), then we must make sure that a′

i0,kl
gets at least

a share c′(i0, j) − Marginc′(kl, j) of the weight c′(i0, j).
As the details of this proof are rather technical, we do not carry out this proof

here. We just make two observations. First, by (11),

c′(i0, j) = c(i0, j) − a ≤
∑

k �=i0,k0

c(j, k) =
∑

k �=i0,k0

c′(j, k) .

Hence, the total weight available on the edges (j, k1), . . . ,(j, km−2) is enough to
receive the remaining weight on edge (i0, j). Second, by (11) and Lemma 7,

c′(i0, j) = c(i0, j) − a ≤ c(i0, j) − c(j, k0) +
∑

i�=i0,k0

c(i, j)

= Marginc(j, k0) = Marginc(k0, j) = Marginc′(k0, j) .

Hence, after assigning c′(i0, j) to the edges (j, k1), . . . , (j, km−2), we can still pass
the weight c′(k0, j) of edge (k0, j) to neighbours of j different from k0.

Assuming that we can find the matrix A′, the matrix A∗ = (a∗
i,k) defined by

a∗
i0,k0

= a

a∗
i,k = a′

i,k ( (i, k) �= (i0, k0) )

is a witness matrix for j and c, with the desired value a for a∗
i0,k0

. ��
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Algorithm for the Global Problem

We return to the context of a complete weighted tree (T, c). We can use Theo-
rem 5 and Theorem 10 to decide whether or not there exists a matching transport
Tr on (T, c). Assume that this is the case. For two different leaves l1 (the source)
and l2 (the target), let MinTr(l1, l2) and MaxTr(l1, l2) denote the minimum and
maximum possible values for Tr(l1, l2) respectively. We use Theorem 11 to de-
termine these values. The algorithm for this is simple.

The transport from l1 to l2 follows the (unique) path in the tree from l1 to
l2. Let j1, . . . , jp for some p ≥ 0 be the internal nodes on this path, in the order
of occurrence on the path. Let us define j0 = l1 and jp+1 = l2.

If p = 0 (which is only possible if l1 and l2 are the only nodes in the tree), then
obviously, MinTr(l1, l2) = MaxTr(l1, l2) = c(l1, l2). It is impossible for containers
from l1 to ‘escape’ to other destinations, as there are no other destinations.

Now assume that p ≥ 1. Let us denote the lower bound and upper bound for
ai0,k0 from Theorem 11 by LB(i0, j, k0) and UB(i0, j, k0), respectively.

As announced in the introduction, to obtain MinTr(l1, l2), we proceed in a
greedy way. In each internal node jk on the path from l1 to l2, we direct as
much weight as possible from the preceding node jk−1 to neighbours of jk other
than jk+1. As we have to pass at least LB(jk−1, jk, jk+1) of the weight from
jk−1 to jk+1, we can direct at most c(jk−1, jk) − LB(jk−1, jk, jk+1) to the other
neighbours (see also (13)). Then MinTr(l1, l2) equals the weight remaining from
c(l1, j1) after passing by all internal nodes:

MinTr(l1, l2) = max
(

0, c(l1, j1)−
p∑

k=1

(c(jk−1, jk)−LB(jk−1, jk, jk+1))
)
. (14)

To obtain MaxTr(l1, l2), for each internal node jk on the path from l1 to l2, we
pass as much weight as possible from jk−1 via jk to jk+1. The minimum value
UB(jk−1, jk, jk+1) we encounter on the path determines the maximum weight
that can be transported from l1 to l2:

MaxTr(l1, l2) =
p

min
k=1

UB(jk−1, jk, jk+1) . (15)

The complete algorithm consists of first determining the path from l1 to l2, and
then (if p ≥ 1) calculating (14) and (15). It is not hard to see that the time
complexity of this algorithm is linear in the size of the input.

Let us consider the weighted tree from Fig. 1, and let l1 = 1 and l2 = 4. Then
the path from l1 to l2 contains p = 3 internal nodes 6, 3, 8, and our algorithm
yields the following sequence of values:

k 0 1 2 3 4
jk 1 6 3 8 4
c(jk−1, jk) − LB(jk−1, jk, jk+1) 2 1 1
UB(jk−1, jk, jk+1) 3 4 5

As a result, MinTr(1, 4) = 5−(2+1+1) = 1 and MaxTr(1, 4) = min(3, 4, 5) = 3.
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6 Concluding Remarks

A large fraction of this paper dealt with transport nodes and corresponding
witness matrices A = (ai,k). In the resulting algorithm, these concepts do not
play any role. However, we needed them to prove that the algorithm is correct,
i.e., to prove that the minimum (or maximum) value computed for the transport
from one leaf (the source) to another leaf (the target) in a weighted tree, can be
extended to a complete matching transport on the tree, and that this value is
indeed minimal (maximal, respectively).

In the introduction, we explained why standard max-flow algorithms such as
the Ford-Fulkerson algorithm could not be applied directly to High Spies. For
the integer-valued case, however, there does exist an approach to the problem,
based on such algorithms. In this approach, the lower bound and upper bound
for the (local) transport at an internal node j are found by fixing a candidate
value ai0,k0 = a (for proper choices of a), and trying to extend this to a com-
plete m × m witness matrix A = (ai,k). With two copies of every neighbour i
of j (corresponding to the edges (i, j) and (j, i), respectively), two additional
nodes (source and target) and proper connections between the nodes, A can be
derived from a maximum flow with value

∑m
i ci,j − a. However, as the number

of connections is quadratic in m and the complexity of max-flow algorithms is at
least linear in this number, this ‘max-flow approach’ is far more time-consuming
than applying Theorem 11.

The ‘max-flow approach’ can be extended in a natural way to an approach
for finding the maximum (global) transport between two leaves, which does not
rely on (local) transports at internal nodes. Again, however, this would be far
less efficient than our algorithm. Moreover, this extension does not work for the
minimum (global) transport.

Both the original definition of a matching transport (Definition 3) and the
equivalent formulation in terms of transport nodes from Theorem 5 are well
suited to generate instances of High Spies. Due to space limitations, we could
not elaborate on that here, but we plan to do this in a forthcoming report. In
that report, we will also give more detailed proofs for some of the results in this
paper.

We want to emphasize, that we did not expect the teams that participated in
the Benelux Algorithm Programming Contest 2006 to prove that their solutions
for High Spies were correct. A correct implementation of the algorithm described
in Sect. 5 was sufficient.
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