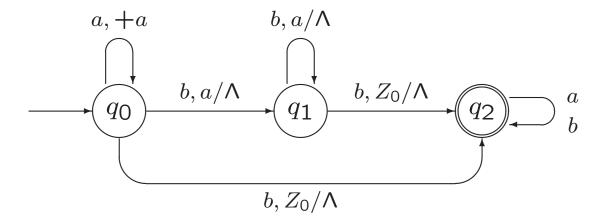
Exercise.

What language is accepted by the following pushdown automaton:



From exercise class 8:

Exercise 5.16.

Show that if L is accepted by a PDA, then L is accepted by a PDA that never crashes (i.e., for which the stack never empties and no configuration is reached from which there is no move defined).

From lecture 8:

Stack in PDA contains symbols from certain alphabet.

Usual stack operations: pop, top, push

Extra possiblity: replace top element X by string α

$$\begin{array}{ll} \alpha = \Lambda & \text{pop} \\ \alpha = X & \text{top} \\ \alpha = YX & \text{push} \\ \alpha = \beta X & \text{push}^* \\ \alpha = \dots \end{array}$$

Top element X is required to do a move!

From exercise class 8:

Exercise 5.17.

Show that if L is accepted by a PDA, then L is accepted by a PDA in which every move

- * either pops something from the stack (i.e., removes a stack symbol without putting anything else on the stack);
- * or pushes a single symbol onto the stack on top of the symbol that was previously on top;
- * or leaves the stack unchanged.

Hence, each action on the stack due to a move in the PDA has one of the following forms:

- * either X/Λ (with $X \in \Gamma$),
- * or X/YX (with $X,Y \in \Gamma$),
- * or X/X (with $X \in \Gamma$).

From lecture 6:

Theorem 4.9.

If L_1 and L_2 are context-free languages over an alphabet Σ , then

$$L_1 \cup L_2$$
, L_1L_2 and L_1^*

are also CFLs.

Exercise 5.19. 🌲 🏚

Suppose M_1 and M_2 are PDAs accepting L_1 and L_2 , respectively. For both the languages L_1L_2 and L_1^* , describe a procedure for constructing a PDA accepting the language.

In each case, nondeterminism will be necessary. Be sure to say precisely how the stack of the new machine works; no relationship is assumed between the stack alphabets of M_1 and M_2 .

Answer begins with:

Let
$$M_1 = (Q_1, \Sigma, \Gamma_1, q_{01}, Z_{01}, A_1, \delta_1)$$

and let $M_2 = (Q_2, \Sigma, \Gamma_2, q_{02}, Z_{02}, A_2, \delta_2)$.

Exercise 5.25.

A counter automaton is a PDA with just two stack symbols, A and Z_0 , for which the string on the stack is always of the form A^nZ_0 for some $n \ge 0$.

(In other words, the only possible change in the stack contents is a change in the number of A's on the stack.)

For some context-free languages, such as *AnBn*, the obvious PDA to accept the language is in fact a counter automaton.

Construct a counter automaton to accept the given language in each case below.

a.
$$\{x \in \{a,b\}^* \mid n_a(x) = n_b(x)\}$$

b.
$$\clubsuit \ \{x \in \{a,b\}^* \mid n_a(x) = 2n_b(x)\}$$

Exercise 5.28.

In each case below, you are given a CFG G and a string x that it generates.

Draw the nondeterministic top-down PDA NT(G).

Trace a sequence of moves in NT(G) by which x is accepted, showing at each step the state, the unread input, and the stack contents.

Show at the same time the corresponding leftmost derivation of x in the grammar. See Example 5.19 for a guide.

b. \clubsuit The grammar has productions $S \to S + S \mid S*S \mid [S] \mid a$, and x = [a*a + a].

Exercise 5.34.

In each case below, you are given a CFG ${\cal G}$ and a string x that it generates.

Draw the nondeterministic bottom-up PDA NB(G).

Trace a sequence of moves in NB(G) by which x is accepted, showing at each step the state, the (reversed) stack contents and the unread input.

Show at the same time the corresponding rightmost derivation of x (in reverse order) in the grammar. See Example 5.24 for a guide.

a. \clubsuit The grammar has productions $S \to S[S] \mid \Lambda$ and x = [][[]].

Exercise 5.30.

For a certain CFG G, the moves shown below are those by which the nondeterministic bottom-up PDA NB(G) accepts the input aabbab. Each occurrence of \vdash^* indicates a sequence of moves constituting a reduction. Draw the derivation tree for aabbab that corresponds to this sequence of moves.

$$(q_{0}, aabbab, Z_{0}) \vdash (q_{0}, abbab, aZ_{0}) \vdash (q_{0}, bbab, aaZ_{0}) \\ \vdash (q_{0}, bab, baaZ_{0}) \vdash^{*} (q_{0}, bab, SaZ_{0}) \\ \vdash (q_{0}, ab, bSaZ_{0}) \vdash^{*} (q_{0}, ab, SZ_{0}) \\ \vdash (q_{0}, b, aSZ_{0}) \vdash (q_{0}, \Lambda, baSZ_{0}) \\ \vdash^{*} (q_{0}, \Lambda, SSZ_{0}) \vdash^{*} (q_{0}, \Lambda, SZ_{0}) \\ \vdash (q_{1}, \Lambda, Z_{0}) \vdash (q_{2}, \Lambda, Z_{0})$$

From exam Automata Theory, 23 December, 2021

Let

$$L = \{a^i b^j a^k \mid i, j, k \ge 0 \text{ and } i + k \le 2j\}$$

- **a.** Give the first six elements in the canonical (shortlex) order of L.
- **b.** Draw a pushdown automaton M, such that L(M) = L. This pushdown automaton must be directly based on the properties of the language. So it must not be the result of a standard construction to, e.g., transform a context-free grammar into a pushdown automaton.

Try to make M deterministic, and not containing any Λ -transitions.