Exercise 3.32.

 $x \in \Sigma^*$ such that $q \in \delta^*(p,x)$.)

Let $M=(Q,\Sigma,q_0,A,\delta)$ be an NFA accepting a language L. Assume that there are no transitions to q_0 , that A has only one element, q_f , and that there are no transitions from q_f .

a. Let M_1 be obtained from M by adding Λ -transitions from q_0 to every state that is reachable from q_0 in M. (If p and q are states, q is reachable from p if there is a string

Describe (in terms of L) the language accepted by M_1 .

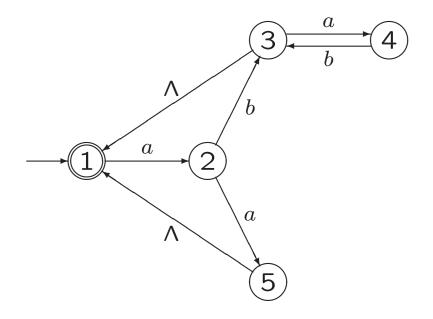
- **b.** Let M_2 be obtained from M by adding Λ -transitions to q_f from every state from which q_f is reachable in M. Describe (in terms of L) the language accepted by M_2 .
- c. Let M_3 be obtained from M by adding both the Λ -transitions in (a) and those in (b).

Describe (in terms of L) the language accepted by M_3 .

Exercise 3.37.

For each part below, use the algorithm from the lecture to draw an NFA with no Λ -transitions accepting the same language as the NFA pictured.

b.

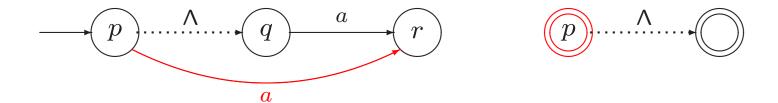


Hint: use the transition table of the NFA, extended with the Λ -closure of every state:

\overline{q}	$\delta(q,a)$	$\delta(q,b)$	$\delta(q, \Lambda)$	$\Lambda(\{q\})$
1	2	_	_	• • •
2	5	3	_	• • •
3	4	_	1	• • •
4	_	3	_	• • •
5	_	_	1	• • •

Exercise.

Our construction:



∧-removal

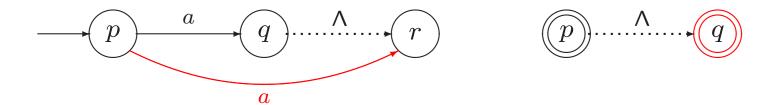
Given NFA $M=(Q,\Sigma,\delta,q_0,A)$, construct NFA $M_1=(Q,\Sigma,\delta_1,q_0,A_1)$ without Λ -transitions:

- whenever $q \in \Lambda_M(\{p\})$ and $r \in \delta(q, a)$, add r to $\delta_1(p, a)$
- whenever $\Lambda_M(\{p\}) \cap A \neq \emptyset$, add p to A_1 .

continued on next slide...

Exercise. (ctd.)

Is it possible to invert the construction:



∧-removal

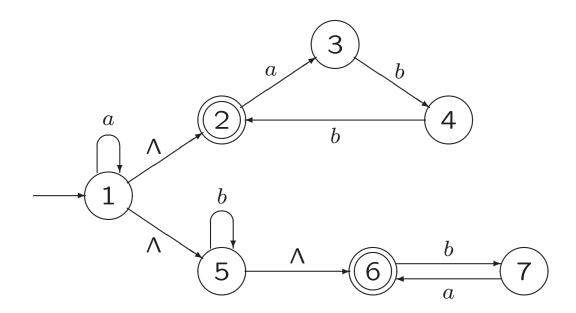
Given NFA $M=(Q,\Sigma,\delta,q_0,A)$, construct NFA $M_1=(Q,\Sigma,\delta_1,q_0,A_1)$ without Λ -transitions:

- whenever $q \in \delta(p, a)$ and $r \in \Lambda_M(\{q\})$, add r to $\delta_1(p, a)$
- whenever $p \in A$ and $q \in \Lambda_M(\{p\})$, add q to A_1 .

Exercise 3.40.

For each part below, draw an FA accepting the same language as the NFA shown.

a.



Hint: First eliminate the Λ -transitions, then apply the subset construction. In both steps, use the transition table to avoid mistakes.

Exercise 3.7.

Find a regular expression corresponding to each of the following subsets of $\{a,b\}^*$.

- **a.** \clubsuit The language of all strings containing exactly two a's.
- **c.** \clubsuit The language of all strings that do not end with ab.
- **e.** \clubsuit The language of all strings not containing the substring aa.
- **f.** \clubsuit The language of all strings in which the number of a's is even.

Exercise. (Example 3.4)

Find a regular expression corresponding to the language of:

all strings over $\{a,b\}$ in which both the number of a's and the number of b's is even.

Exercise 3.7.

Find a regular expression corresponding to each of the following subsets of $\{a,b\}^*$.

- **g.** \clubsuit The language of all strings containing no more than one occurrence of the string aa. (The string aaa should be viewed as containing two occurrences of aa.)
- i. The language of all strings containing both bb and aba as substrings.
- **j.** The language of all strings not containing the substring aaa.
- **k.** \clubsuit The language of all strings not containing the substring bba.
- **I.** \clubsuit The language of all strings containing both aba and bab as substrings.
- **m.** \clubsuit The language of all strings in which the number of a's is even and the number of b's is odd.

Exercise 3.1. 4

In each case below, find a string of minimum length in $\{a,b\}^*$ not in the language corresponding to the given regular expression.

- **a.** $b^*(ab)^*a^*$
- **b.** $(a^* + b^*)(a^* + b^*)(a^* + b^*)$

Exercise 3.2. Consider the two regular expressions

$$r = a^* + b^*$$
 $s = ab^* + ba^* + b^*a + (a^*b)^*$

- **a.** Find a string corresponding to r but not to s.
- **b.** Find a string corresponding to s but not to r.
- **c.** Find a string corresponding to both r and s.
- **d.** Find a string in $\{a,b\}^*$ corresponding to neither r nor s.

Exercise 3.10. 4

- **a.** If L is the language corresponding to the regular expression $(aab + bbaba)^*baba$, find a regular expression corresponding to $L^r = \{x^r \mid x \in L\}$.
- **b.** Using the example in part (a) as a model, give a recursive definition (based on Definition 3.1) of the reverse e^r of a regular expression e.
- **c.** Show that for every regular expression e, if the language L corresponds to e, then L^r corresponds to e^r .