From exam Automata Theory, 21 December, 2023

Let

$$L = \{ a^i b^j \mid i \neq j \}$$

For example, $a^5b^4 \in L$. Let us assume that $n \ge 2$ for this exercise.

For each of the following four strings x_1, x_2, x_3, x_4 , indicate whether it is suitable for establishing a contradiction with the pumping lemma.

Furthermore, if x_i is indeed suitable, then derive a contradiction with the pumping lemma. If x_i is not suitable, indicate why not, for example, via a concrete decomposition uvw of x_i that does satisfy the pumping lemma.

$$x_1 = a^{n+1}b^n$$

$$x_2 = a^{n!}b^{(n+1)!}$$

$$x_3 = aaaaabbbb$$

$$x_4 = b^{2n}$$

From exam Automata Theory, 19 December, 2024

Consider the language

$$L = \{x \in \{a, b\}^* \mid n_a(x) \ge n_b(x) \ge n_a(x) - 2\}$$

Hence, L contains the strings in which there are 0, 1 or 2 fewer b's than a's. For example, $aaba \in L$ and $bbabaa \in L$, but $aabaa \notin L$ because there are too few b's, and $bba \notin L$ because there are too many b's.

Prove that the language L cannot be accepted by a finite automaton by using the pumping lemma for regular languages.

From lecture 2:

FA
$$M_i = (Q_i, \Sigma, q_i, A_i, \delta_i)$$
 $i = 1, 2$

Product construction

Construct FA $M = (Q, \Sigma, q_0, A, \delta)$ such that

- $-Q = Q_1 \times Q_2$
- $-q_0 = (q_1, q_2)$
- $-\delta((p,q),\sigma) = (\delta_1(p,\sigma),\delta_2(q,\sigma))$
- -A as needed

Theorem 2.15 (Parallel simulation).

- $-A = \{(p,q) \mid p \in A_1 \text{ or } q \in A_2\}, \text{ then } L(M) = L(M_1) \cup L(M_2)$
- $-A = \{(p,q) \mid p \in A_1 \text{ and } q \in A_2\}, \text{ then } L(M) = L(M_1) \cap L(M_2)$
- $-A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) L(M_2)$

Exercise 2.27.

Describe decision algorithms to answer each of the following questions.

- a. \clubsuit Given two FAs M_1 and M_2 , are there any strings that are accepted by neither?
- **d.** \spadesuit Given an FA M accepting a language L, and a string x, is x a prefix of an element of L?
- **g.** Given two FAs M_1 and M_2 , is $L(M_1) \subseteq L(M_2)$?

Exercise 3.21. 4

Consider the following transition table for an NFA with states 1–5, initial state 1 and input alphabet $\{a,b\}$. There are no Λ -transitions:

q	$\delta(q,a)$	$\delta(q,b)$
1	$\{1, 2\}$	1
2	{3}	{3}
3	{4}	{4}
4	{5}	\emptyset
5	Ø	{5}

- a. Draw a transition diagram of the NFA (note that the accepting states are not specified).
- **b.** Calculate $\delta^*(1, ab)$. Hint: first calculate $\delta^*(1, \Lambda)$, then $\delta^*(1, a)$, then $\delta^*(1, ab)$.
- **c.** Calculate $\delta^*(1, abaab)$.

Exercise 3.24. 4

Let $M=(Q,\Sigma,q_0,A,\delta)$ be an NFA with no Λ -transitions. Show that for every $q\in Q$ and every $\sigma\in \Sigma$, $\delta^*(q,\sigma)=\delta(q,\sigma)$.

Exercise 3.33. 4

Give an example of a regular language L containing Λ that cannot be accepted by any NFA having only one accepting state and no Λ -transitions, and show that your answer is correct.

Exercise 3.22.

A transition table is given for an NFA with seven states.

q	$\delta(q,a)$	$\delta(q,b)$	$\delta(q, \Lambda)$
1	Ø	Ø	{2}
2	{3}	Ø	{5}
3	Ø	{4}	Ø
4	{4}	Ø	{1}
5	Ø	{6,7}	Ø
6	{5}	Ø	Ø
7	Ø	Ø	{1}

Find:

d. $\& \delta^*(1,ba)$

Hint: first calculate $\delta^*(1,\Lambda)$, then $\delta^*(1,b)$, then $\delta^*(1,ba)$.

e. $\delta^*(1, ab)$

f. $\delta^*(1, ababa)$

Exercise 3.32.

Let $M=(Q,\Sigma,q_0,A,\delta)$ be an NFA accepting a language L. Assume that there are no transitions to q_0 , that A has only one element, q_f , and that there are no transitions from q_f .

a. Let M_1 be obtained from M by adding Λ -transitions from q_0 to every state that is reachable from q_0 in M.

(If p and q are states, q is reachable from p if there is a string $x \in \Sigma^*$ such that $q \in \delta^*(p, x)$.)

Describe (in terms of L) the language accepted by M_1 .

b. Let M_2 be obtained from M by adding Λ -transitions to q_f from every state from which q_f is reachable in M.

Describe (in terms of L) the language accepted by M_2 .

c. Let M_3 be obtained from M by adding both the Λ -transitions in (a) and those in (b).

Describe (in terms of L) the language accepted by M_3 .