Definition (FA)
[deterministic] finite automaton

— @ finite set  states;
— Y finite input alphabet;

—qgo € @ initial state;
- AC Q accepting states;
—-90:Q xX —= @ transition function.
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Extended transition function

FAM=(Q,X,qo,A,J)

Definition

extended transition function 6* : @ X X* — @, such that
-0"(q;N\)=q forqe@

-0*(q,yo0) =6(0*(q,y),0) forge Q,yexX* o€ X

Theorem
q = 6*(p, w) iff there is a path in [the transition graph of] M from p to q
with label w.
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Language accepted by ra

Definition

Let M = (Q, X, go, A, 0) be an FA, and let x € £*. The string x is
accepted by M if §*(qo, x) € A.

The language accepted by M = (Q, X, qo, A, d) is the set
L(M)={xeX*| xis accepted by M }
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Complement intro

Example
L={x e {a, b}*| x ends with b and does not contain aa }

last a

a,b
4» aa @ a
b b seen aa

last b b

~(PAQ)=-PV-Q

Lc = { x € {a, b}* | x does not end with b or contains aa }
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Complement intro

Example
L={x e {a, b}*| x ends with b and does not contain aa }
a,b

last a

a,b
b b seen aa

last b b b

~(PAQ)=-PV-Q

Lc = { x € {a, b}* | x does not end with b or contains aa }
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Complement, construction

Construction
FA M = (Q,Z, qo, A, 5),
let M€ = (Q, >, qo, Q — A,(S)

Theorem
L(M€) = £* — L(M)

Proof. ..
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Complement, construction

Construction
FA M= (Q,X, qo,A,J),
IEt MC = (Qa 27 qo, Q - A7 6)

Theorem
L(M€) = T* — L(M)

Proof. Suppose x € L(M€). Then x is accepted by M€, so it holds that
0*(qo,x) € Q@ — A, so §*(qo,x) ¢ A. Hence, x is not accepted by M, so
x & L(M), so x € £* — L(M).

Suppose x € * — L(M). Then x ¢ L(M), so x is not accepted by M.
Hence, 6*(qo, x) € A, so *(qo, x) € Q — A, so x is accepted by M€, that
is, x € L(M°).
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Combining languages, intro

Example (Even number of a / ending with b)
odd a
a
b (oDs
a
l b last b
. b
a

Intersection. . .
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Combining languages, intro

Example (Even number of a, and ending with b)

b
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Combining languages
FA M; = (Qi, X, g1, A 6;)  i=1,2

Product construction

construct FA M = (Q, X, qo, A, d) such that
- QRQ=Q xQ

- g0 = (91, 92)

- 6( (P, q)va) = ( (51(P, U)’52(q70) )
— A as needed

Theorem (2.15 Parallel simulation)

-A={(p,q) | p€ A1 or g € Ax}, then L(M) = L(M1) U L(M,)
-A={(p,q) | p € A1 and q € Ay}, then L(M) = L(My) N L(M>)
~A={(p,q) | p€ AL and q ¢ A}, then L(M) = L(My) — L(M>)

The formal proof of this result does not have to be known for the exam

Formele Talen en Berekenbaarheid (Deterministic) Finite Automata Boolean operations 54 /109



Might not be minimal

Even number of a and ending with b

odd a
any last letter
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Proof

Exercise 2.11.
Use induction to show that for every x € £* and every (p,q) € Q,

3*((p, @), x) = (81(p, x), 05(q, x))

The formal proof of this result does not have to be known for the exam

Formele Talen en Berekenbaarheid (Deterministic) Finite Automata Boolean operations 56 / 109



Example: intersection ‘and’ (product construction)

not substring aa
b a,b

bore=d -

b ab b
o
b

ends with ab
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Example: union, contain either ab or bba

Bebod Brond-d
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Example: union, contain either ab or bba

Alternative. ..
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Another example

L={we{a b}*| w starts and ends with an a, and |w| is even }
a b
i 3 a, b
b
S
b a,b

Ta b
K v b a
L
\\\\é,ib_,//
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Regular languages

Regular language is language accepted by an FA.

Theorem

REG is closed under complement, union, intersection and minus.
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[M] Fig. 2.28
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Pumping lemma for regular languages

Regular language is language accepted by an FA.

Theorem
Suppose L is a language over the alphabet L. If L is accepted by a finite
automaton M, and if n is the number of states of M, then
YV forevery x € L
satisfying |x| > n
4 there are three strings u, v, and w,
such that x = uvw and the following three conditions are true:
(1) |uv| < n,
(2) vl =1
vV and (3) for all m > 0, uv™w belongs to L
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Pumping lemma for regular languages

In other words:

Theorem
YV For every regular language L
4 there exists a constant n > 1
such that
YV for every x € L
with |x| > n
4 there exists a decomposition x = uvw
with (1) |uv| < n,
and (2) |v| > 1
such that
vV (3)forallm>0, uv™w e L

if L= L(M) then n=Q)|.
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Pumping lemma for regular languages

In other words:

Theorem
If L is a regular language, then
4 there exists a constant n > 1
such that
YV for every x € L
with |x| > n
4 there exists a decomposition x = uvw
with (1) |uv| < n,
and (2) |v| > 1
such that
vV (3)forallm>0, uv™we L

if L= L(M) then n=|Q|.
Introduction to Logic: p - q <= —-qg— —p

Formele Talen en Berekenbaarheid (Deterministic) Finite Automata

Boolean operations

65 / 109



Pumping lemma for regular

Theorem

If

YV  foreveryn>1

J  there exists x € L
with |x| > n
such that

YV for every decomposition x = uvw
with (1) |uv| < n,
and (2) |v| > 1

3 (3) there exists m > 0,
such that
uvmw ¢ L

then L is not a regular language.

Formele Talen en Berekenbaarheid

(Deterministic) Finite Automata Boolean operations

languages

66 / 109



Applying the pumping lemma

Example
L= {a'b’ | i > 0} is not accepted by FA.

Proof: by contradiction.
Assume that L is accepted by FA with n states. ..
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Applying the pumping lemma

Example
L= {a'b’ | i > 0} is not accepted by FA.

Proof: by contradiction.

Assume that L is accepted by FA with n states.

Take x = a"b". Then x € L, and |x| =2n > n.

Thus there exists a decomposition x = uvw such that |uv| < n with v
nonempty, and uv™w € L for every m.

Whatever this decomposition is, v consists of a's only. Consider m = 0.
Deleting v from the string x will delete a number of a's. So uv®w is of the
form a” b" with n’ < n.

This string is not in L; a contradiction. (m > 2 would also yield
contradiction)

So, L is not regular.
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Applying the pumping lemma

Example
L= {a'b’ | i > 0} is not accepted by FA.

AEqB = {x € {a,b}" | ny(x) = nb(x) }
Same argument, or closure properties

Formele Talen en Berekenbaarheid (Deterministic) Finite Automata Boolean operations 69 / 109



Combining languages
FA M; = (Qi, X, g1, A 6;)  i=1,2

Product construction

construct FA M = (Q, X, qo, A, d) such that
- QRQ=Q xQ

- g0 = (91, 92)

- 6( (P, q)va) = ( (51(P, U)’52(q70) )
— A as needed

Theorem (2.15 Parallel simulation)

-A={(p,q) | p€ A1 or g € Ax}, then L(M) = L(M1) U L(M,)
-A={(p,q) | p € A1 and q € Ay}, then L(M) = L(My) N L(M>)
~A={(p,q) | p€ AL and q ¢ A}, then L(M) = L(My) — L(M>)

The formal proof of this result does not have to be known for the exam
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Applying the pumping lemma

Example
L=AEqB = {x € {a,b}* | na(x) = np(x) } is not accepted by FA.

Exactly the same argument can be used (verbatim) to prove that
L = AEgB is not regular.

We can also apply closure properties of REG to see that AEgB is not
regular, as follows.

Assume AEgB is regular. Then also

AnBn = {a'b’ | i > 0} = AEqB N {a}*{b}* is regular, as regular languages
are closed under intersection.

This is a contradiction, as we just have argued that AnBn is not regular.
Thus, also AEgB is not regular.
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Issues:
Which n? Can | just take x = aababaabbab?
Which x? Some x may not yield a contradiction.
Which decomposition uvw? Can | just take u = a'?, v = a ,
w=>5b""?

Which m? Some m may not yield a contradiction.
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