Formalism

Definition (FA)

[deterministic] finite automaton 5-tuple $M = (Q, \Sigma, q_0, A, \delta)$,

- Q finite set states;
- $-\Sigma$ finite input alphabet;
- $-q_0 \in Q$ initial state;
- $-A \subseteq Q$ accepting states;
- $-\delta: Q \times \Sigma \to Q$ transition function.

[M] D 2.11 Finite automaton

[L] D 2.1 Deterministic finite accepter, has 'final' states

Extended transition function

fa
$$M = (Q, \Sigma, q_0, A, \delta)$$

Definition

extended transition function $\delta^*: Q \times \Sigma^* \to Q$, such that

- $-\delta^*(q,\Lambda)=q\quad ext{ for } q\in Q$
- $-\delta^*(q,y\sigma) = \delta(\delta^*(q,y),\sigma)$ for $q \in Q, y \in \Sigma^*, \sigma \in \Sigma$

[M] D 2.12 [L] p.40/1

Theorem

 $q = \delta^*(p, w)$ iff there is a path in [the transition graph of] M from p to q with label w.

[L] Th 2.1

Language accepted by FA

Definition

Let $M = (Q, \Sigma, q_0, A, \delta)$ be an FA, and let $x \in \Sigma^*$. The string x is *accepted* by M if $\delta^*(q_0, x) \in A$.

The *language accepted* by $M = (Q, \Sigma, q_0, A, \delta)$ is the set

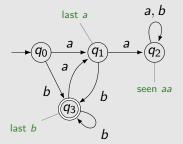
$$L(M) = \{ x \in \Sigma^* \mid x \text{ is accepted by } M \}$$

[M] D 2.14 [L] D 2.2

Complement intro

Example

$$L = \{ x \in \{a, b\}^* \mid x \text{ ends with } b \text{ and does not contain } aa \}$$



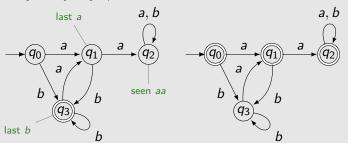
$$\neg(P \land Q) = \neg P \lor \neg Q$$

 $L^c = \{ x \in \{a, b\}^* \mid x \text{ does not end with } b \text{ or contains } aa \}$

Complement intro

Example

$$L = \{ x \in \{a, b\}^* \mid x \text{ ends with } b \text{ and does not contain } aa \}$$



$$\neg(P \land Q) = \neg P \lor \neg Q$$

 $L^c = \{ x \in \{a, b\}^* \mid x \text{ does not end with } b \text{ or contains } aa \}$

Complement, construction

Construction

FA
$$M = (Q, \Sigma, q_0, A, \delta)$$
,

let $M^c = (Q, \Sigma, q_0, Q - A, \delta)$

Theorem

$$L(M^c) = \Sigma^* - L(M)$$

Proof...

Complement, construction

Construction

FA
$$M = (Q, \Sigma, q_0, A, \delta)$$
,

let
$$M^c = (Q, \Sigma, q_0, Q - A, \delta)$$

Theorem

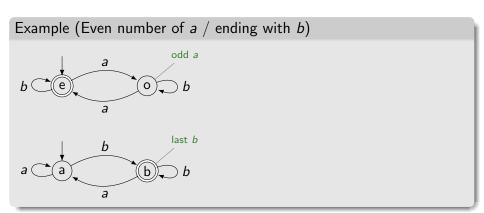
$$L(M^c) = \Sigma^* - L(M)$$

Proof. Suppose $x \in L(M^c)$. Then x is accepted by M^c , so it holds that $\delta^*(q_0,x) \in Q-A$, so $\delta^*(q_0,x) \notin A$. Hence, x is not accepted by M, so $x \notin L(M)$, so $x \in \Sigma^* - L(M)$.

Suppose $x \in \Sigma^* - L(M)$. Then $x \notin L(M)$, so x is not accepted by M.

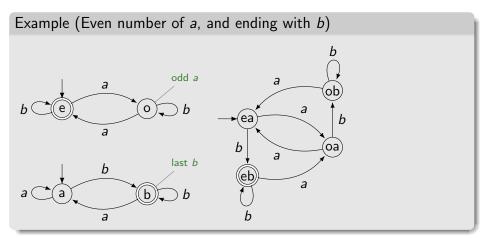
Hence, $\delta^*(q_0, x) \notin A$, so $\delta^*(q_0, x) \in Q - A$, so x is accepted by M^c , that is, $x \in L(M^c)$.

Combining languages, intro



Intersection...

Combining languages, intro



Combining languages

FA
$$M_i = (Q_i, \Sigma, q_i, A_i, \delta_i)$$
 $i = 1, 2$

Product construction

construct FA $M = (Q, \Sigma, q_0, A, \delta)$ such that

- $-Q = Q_1 \times Q_2$
- $-q_0=(q_1,q_2)$
- $-\delta((p,q),\sigma)=(\delta_1(p,\sigma),\delta_2(q,\sigma))$
- A as needed

Theorem (2.15 Parallel simulation)

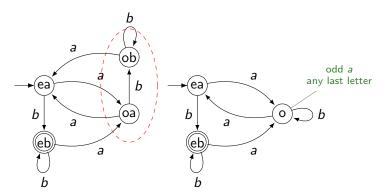
- $-A = \{(p,q) \mid p \in A_1 \text{ or } q \in A_2\}, \text{ then } L(M) = L(M_1) \cup L(M_2)$
- $-A = \{(p,q) \mid p \in A_1 \text{ and } q \in A_2\}, \text{ then } L(M) = L(M_1) \cap L(M_2)$
- $-A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) L(M_2)$

The formal proof of this result does not have to be known for the exam

[M] Sect 2.2

Might not be minimal

Even number of a and ending with b

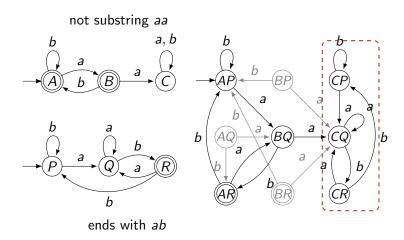


Exercise 2.11.

Use induction to show that for every $x \in \Sigma^*$ and every $(p, q) \in Q$, $\delta^*((p, q), x) = (\delta_1^*(p, x), \delta_2^*(q, x))$

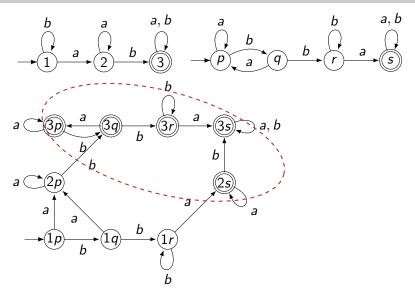
The formal proof of this result does not have to be known for the exam

Example: intersection 'and' (product construction)



[M] E 2.16

Example: union, contain either ab or bba



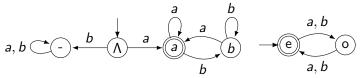
[M] E. 2.18, see also \hookrightarrow subset construction

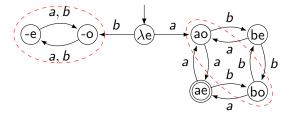
Example: union, contain either ab or bba

Alternative. . .

Another example

 $L = \{ w \in \{a, b\}^* \mid w \text{ starts and ends with an } a, \text{ and } |w| \text{ is even } \}$





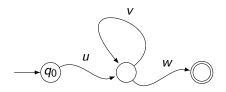
Regular languages

Regular language is language accepted by an FA.

Theorem

REG is closed under complement, union, intersection and minus.

Pumping lemma



[M] Fig. 2.28

Regular language is language accepted by an FA.

Theorem

Suppose L is a language over the alphabet Σ . If L is accepted by a finite automaton M, and if n is the number of states of M, then

- \forall for every $x \in L$ satisfying $|x| \ge n$
 - there are three strings u, v, and w,
 - such that x = uvw and the following three conditions are true:
 - $(1) |uv| \leq n,$
 - (2) $|v| \ge 1$
- \forall and (3) for all $m \geq 0$, $uv^m w$ belongs to L

[M] Thm. 2.29

In other words:

```
Theorem
   For every regular language L
    there exists a constant n > 1
       such that
   for every x \in L
       with |x| > n
    there exists a decomposition x = uvw
       with (1) |uv| \leq n,
       and (2) |v| \ge 1
       such that
  (3) for all m \ge 0, uv^m w \in L
```

```
if L = L(M) then n = |Q|.
```

[M] Thm. 2.29

In other words:

```
Theorem
If L is a regular language, then
    there exists a constant n > 1
       such that
   for every x \in L
       with |x| > n
\exists there exists a decomposition x = uvw
       with (1) |uv| \leq n,
       and (2) |v| \ge 1
       such that
\forall (3) for all m > 0, uv^m w \in L
```

if
$$L = L(M)$$
 then $n = |Q|$.

Introduction to Logic: $p \rightarrow q \iff \neg q \rightarrow \neg p$

```
Theorem
   for every n > 1
    there exists x \in I
       with |x| > n
       such that
    for every decomposition x = uvw
       with (1) |uv| \leq n,
       and (2) |v| \ge 1
  (3) there exists m \geq 0,
       such that
       uv^m w \notin L
then L is not a regular language.
```

```
[M] Thm. 2.29
```

Example

 $L = \{a^i b^i \mid i \ge 0\}$ is not accepted by FA.

[M] E 2.30

Proof: by contradiction.

Assume that L is accepted by FA with n states...

Example

 $L = \{a^i b^i \mid i \ge 0\}$ is not accepted by FA.

[M] E 2.30

Proof: by contradiction.

Assume that L is accepted by FA with n states.

Take $x = a^n b^n$. Then $x \in L$, and $|x| = 2n \ge n$.

Thus there exists a decomposition x = uvw such that $|uv| \le n$ with v nonempty, and $uv^m w \in L$ for every m.

Whatever this decomposition is, v consists of a's only. Consider m = 0.

Deleting v from the string x will delete a number of a's. So uv^0w is of the form $a^{n'}b^n$ with n' < n.

This string is not in L; a contradiction. ($m \ge 2$ would also yield contradiction)

So, L is not regular.

Example

$$L = \{a^i b^i \mid i \ge 0\}$$
 is not accepted by FA.

$$AEqB = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x) \}$$

Same argument, or closure properties

Combining languages

FA
$$M_i = (Q_i, \Sigma, q_i, A_i, \delta_i)$$
 $i = 1, 2$

Product construction

construct FA $M = (Q, \Sigma, q_0, A, \delta)$ such that

- $-Q=Q_1\times Q_2$
- $-q_0=(q_1,q_2)$
- $-\delta((p,q),\sigma) = (\delta_1(p,\sigma),\delta_2(q,\sigma))$
- A as needed

Theorem (2.15 Parallel simulation)

- $-A = \{(p,q) \mid p \in A_1 \text{ or } q \in A_2\}, \text{ then } L(M) = L(M_1) \cup L(M_2)$
- $-A = \{(p,q) \mid p \in A_1 \text{ and } q \in A_2\}, \text{ then } L(M) = L(M_1) \cap L(M_2)$
- $-A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) L(M_2)$

The formal proof of this result does not have to be known for the exam

[M] Sect 2.2

Example

$$L = AEqB = \{x \in \{a, b\}^* \mid n_a(x) = n_b(x)\}$$
 is not accepted by FA.

[M] E 2.30

Exactly the same argument can be used (verbatim) to prove that L = AEqB is not regular.

We can also apply closure properties of REG to see that AEqB is not regular, as follows.

Assume AEqB is regular. Then also

 $AnBn = \{a^ib^i \mid i \geq 0\} = AEqB \cap \{a\}^*\{b\}^*$ is regular, as regular languages are closed under intersection.

This is a contradiction, as we just have argued that AnBn is not regular.

Thus, also AEqB is not regular.

Issues:

- Which n? Can I just take x = aababaabbab?
- Which x? Some x may not yield a contradiction.
- Which decomposition *uvw*? Can I just take $u = a^{10}$, $v = a^{n-10}$, $w = b^n$?
- Which *m*? Some *m* may not yield a contradiction.

