
Formalism

Definition (FA)

[deterministic] finite automaton 5-tuple M = (Q,Σ, q0,A, δ),
– Q finite set states;
– Σ finite input alphabet;
– q0 ∈ Q initial state;
– A ⊆ Q accepting states;
– δ : Q × Σ → Q transition function.

[M] D 2.11 Finite automaton

[L] D 2.1 Deterministic finite accepter, has ‘final’ states
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Extended transition function

FA M = (Q,Σ, q0,A, δ)

Definition

extended transition function δ∗ : Q × Σ∗ → Q, such that
– δ∗(q,Λ) = q for q ∈ Q
– δ∗(q, yσ) = δ( δ∗(q, y), σ ) for q ∈ Q, y ∈ Σ∗, σ ∈ Σ

[M] D 2.12 [L] p.40/1

Theorem

q = δ∗(p,w) iff there is a path in [the transition graph of] M from p to q
with label w.

[L] Th 2.1

Formele Talen en Berekenbaarheid (Deterministic) Finite Automata FA definition 46 / 109



Language accepted by FA

Definition

Let M = (Q,Σ, q0,A, δ) be an FA, and let x ∈ Σ∗. The string x is
accepted by M if δ∗(q0, x) ∈ A.
The language accepted by M = (Q,Σ, q0,A, δ) is the set
L(M) = { x ∈ Σ∗ | x is accepted by M }

[M] D 2.14 [L] D 2.2
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Complement intro

Example

L = { x ∈ {a, b}∗ | x ends with b and does not contain aa }

q0 q1

last a

q2

seen aa

q3

last b
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b

¬(P ∧ Q) = ¬P ∨ ¬Q

Lc = { x ∈ {a, b}∗ | x does not end with b or contains aa }
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Complement intro

Example

L = { x ∈ {a, b}∗ | x ends with b and does not contain aa }
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¬(P ∧ Q) = ¬P ∨ ¬Q

Lc = { x ∈ {a, b}∗ | x does not end with b or contains aa }
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Complement, construction

Construction

FA M = (Q,Σ, q0,A, δ),

let Mc = (Q,Σ, q0,Q − A, δ)

Theorem

L(Mc) = Σ∗ − L(M)

Proof. . .
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Complement, construction

Construction

FA M = (Q,Σ, q0,A, δ),

let Mc = (Q,Σ, q0,Q − A, δ)

Theorem

L(Mc) = Σ∗ − L(M)

Proof. Suppose x ∈ L(Mc). Then x is accepted by Mc , so it holds that
δ∗(q0, x) ∈ Q − A, so δ∗(q0, x) /∈ A. Hence, x is not accepted by M, so
x 6∈ L(M), so x ∈ Σ∗ − L(M).
Suppose x ∈ Σ∗ − L(M). Then x 6∈ L(M), so x is not accepted by M.
Hence, δ∗(q0, x) 6∈ A, so δ∗(q0, x) ∈ Q − A, so x is accepted by Mc , that
is, x ∈ L(Mc).
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Combining languages, intro

Example (Even number of a / ending with b)
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Intersection. . .
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Combining languages, intro

Example (Even number of a, and ending with b)
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Combining languages

FA Mi = (Qi ,Σ, qi ,Ai , δi ) i = 1, 2

Product construction

construct FA M = (Q,Σ, q0,A, δ) such that
– Q = Q1 × Q2

– q0 = (q1, q2)
– δ( (p, q), σ) = ( δ1(p, σ), δ2(q, σ) )
– A as needed

Theorem (2.15 Parallel simulation)

– A = {(p, q) | p ∈ A1 or q ∈ A2}, then L(M) = L(M1) ∪ L(M2)
– A = {(p, q) | p ∈ A1 and q ∈ A2}, then L(M) = L(M1) ∩ L(M2)
– A = {(p, q) | p ∈ A1 and q /∈ A2}, then L(M) = L(M1)− L(M2)

The formal proof of this result does not have to be known for the exam

[M] Sect 2.2
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Might not be minimal

Even number of a and ending with b
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Proof

Exercise 2.11.

Use induction to show that for every x ∈ Σ∗ and every (p, q) ∈ Q,
δ∗((p, q), x) = (δ∗1(p, x), δ

∗

2(q, x))

The formal proof of this result does not have to be known for the exam
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Example: intersection ‘and’ (product construction)

not substring aa
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[M] E 2.16
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Example: union, contain either ab or bba
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[M] E. 2.18, see also →֒subset construction
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Example: union, contain either ab or bba

Alternative. . .
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Another example

L = { w ∈ {a, b}∗ | w starts and ends with an a, and |w | is even }

Λ- a b
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Regular languages

Regular language is language accepted by an FA.

Theorem

REG is closed under complement, union, intersection and minus.
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Pumping lemma

q0
u

v

w

[M] Fig. 2.28
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Pumping lemma for regular languages

Regular language is language accepted by an FA.

Theorem

Suppose L is a language over the alphabet Σ. If L is accepted by a finite
automaton M, and if n is the number of states of M, then
∀ for every x ∈ L

satisfying |x | ≥ n
∃ there are three strings u, v , and w,

such that x = uvw and the following three conditions are true:
(1) |uv | ≤ n,
(2) |v | ≥ 1

∀ and (3) for all m ≥ 0, uvmw belongs to L

[M] Thm. 2.29
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Pumping lemma for regular languages

In other words:

Theorem

∀ For every regular language L
∃ there exists a constant n ≥ 1

such that
∀ for every x ∈ L

with |x | ≥ n
∃ there exists a decomposition x = uvw

with (1) |uv | ≤ n,
and (2) |v | ≥ 1
such that

∀ (3) for all m ≥ 0, uvmw ∈ L

if L = L(M) then n = |Q|.

[M] Thm. 2.29
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Pumping lemma for regular languages

In other words:

Theorem

If L is a regular language, then
∃ there exists a constant n ≥ 1

such that
∀ for every x ∈ L

with |x | ≥ n
∃ there exists a decomposition x = uvw

with (1) |uv | ≤ n,
and (2) |v | ≥ 1
such that

∀ (3) for all m ≥ 0, uvmw ∈ L

if L = L(M) then n = |Q|.

Introduction to Logic: p → q ⇐⇒ ¬q → ¬p
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Pumping lemma for regular languages

Theorem

If
∀ for every n ≥ 1
∃ there exists x ∈ L

with |x | ≥ n
such that

∀ for every decomposition x = uvw
with (1) |uv | ≤ n,
and (2) |v | ≥ 1

∃ (3) there exists m ≥ 0,
such that
uvmw /∈ L

then L is not a regular language.

[M] Thm. 2.29
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Applying the pumping lemma

Example

L = {aibi | i ≥ 0} is not accepted by FA.

[M] E 2.30

Proof: by contradiction.
Assume that L is accepted by FA with n states. . .
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Applying the pumping lemma

Example

L = {aibi | i ≥ 0} is not accepted by FA.

[M] E 2.30

Proof: by contradiction.
Assume that L is accepted by FA with n states.
Take x = anbn. Then x ∈ L, and |x | = 2n ≥ n.
Thus there exists a decomposition x = uvw such that |uv | ≤ n with v
nonempty, and uvmw ∈ L for every m.
Whatever this decomposition is, v consists of a’s only. Consider m = 0.
Deleting v from the string x will delete a number of a’s. So uv0w is of the
form an

′

bn with n′ < n.
This string is not in L; a contradiction. (m ≥ 2 would also yield
contradiction)
So, L is not regular.
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Applying the pumping lemma

Example

L = {aibi | i ≥ 0} is not accepted by FA.

[M] E 2.30

AEqB = {x ∈ {a, b}∗ | na(x) = nb(x) }
Same argument, or closure properties
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Combining languages

FA Mi = (Qi ,Σ, qi ,Ai , δi ) i = 1, 2

Product construction

construct FA M = (Q,Σ, q0,A, δ) such that
– Q = Q1 × Q2

– q0 = (q1, q2)
– δ( (p, q), σ) = ( δ1(p, σ), δ2(q, σ) )
– A as needed

Theorem (2.15 Parallel simulation)

– A = {(p, q) | p ∈ A1 or q ∈ A2}, then L(M) = L(M1) ∪ L(M2)
– A = {(p, q) | p ∈ A1 and q ∈ A2}, then L(M) = L(M1) ∩ L(M2)
– A = {(p, q) | p ∈ A1 and q /∈ A2}, then L(M) = L(M1)− L(M2)

The formal proof of this result does not have to be known for the exam

[M] Sect 2.2
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Applying the pumping lemma

Example

L = AEqB = {x ∈ {a, b}∗ | na(x) = nb(x) } is not accepted by FA.

[M] E 2.30

Exactly the same argument can be used (verbatim) to prove that
L = AEqB is not regular.

We can also apply closure properties of REG to see that AEqB is not
regular, as follows.

Assume AEqB is regular. Then also
AnBn = {aibi | i ≥ 0} = AEqB ∩ {a}∗{b}∗ is regular, as regular languages
are closed under intersection.
This is a contradiction, as we just have argued that AnBn is not regular.
Thus, also AEqB is not regular.
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Issues:

Which n? Can I just take x = aababaabbab?

Which x? Some x may not yield a contradiction.

Which decomposition uvw? Can I just take u = a10, v = an−10,
w = bn ?

Which m? Some m may not yield a contradiction.
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