Praktisch

- Hoocollege nu, werkcollege woensdag
- Huiswerkopgave 4...
- Nakijken huiswerkopgave 3...

Definition 7.33. An Encoding Function

Assign numbers to each state:

$$n(h_a) = 1$$
, $n(h_r) = 2$, $n(q_0) = 3$, $n(q) \ge 4$ for other $q \in Q$.

Assign numbers to each tape symbol:

$$n(a_i) = i$$
.

Assign numbers to each tape head direction:

$$n(R) = 1$$
, $n(L) = 2$, $n(S) = 3$.

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p, \sigma) = (q, \tau, D)$

$$e(m) = 1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0$$

We list the moves of T in some order as m_1, m_2, \ldots, m_k , and we define

$$e(T) = e(m_1)0e(m_2)0...0e(m_k)0$$

If $z = z_1 z_2 \dots z_i$ is a string, where each $z_i \in \mathcal{S}$,

$$e(z) = {01}^{n(z_1)} 01^{n(z_2)} 0 \dots 01^{n(z_j)} 0$$

Some Crucial features of any encoding function *e*:

- 1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.
- 2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z.
- 3. If w = e(T) or w = e(z), there should be an algorithm for decoding w. Computability e itself...

Definition 9.1. The Languages *NSA* and *SA* Let

$$NSA = \{e(T) \mid T \text{ is a TM, and } e(T) \notin L(T)\}$$

$$SA = \{e(T) \mid T \text{ is a TM, and } e(T) \in L(T)\}$$

(NSA and SA are for "non-self-accepting" and "self-accepting.")

Theorem 9.2. The language *NSA* is not recursively enumerable. The language SA is recursively enumerable but not recursive.

Proof...

Decision problem: problem for which the answer is 'yes' or 'no':

Given ..., is it true that ...?

Given an undirected graph G = (V, E), does G contain a Hamiltonian path?

Given a list of integers $x_1, x_2, ..., x_n$, is the list sorted?

Self-Accepting: Given a $TM\ T$, does T accept the string e(T)?

instances...

Decision problem: problem for which the answer is 'yes' or 'no':

Given ..., is it true that ...?

yes-instances of a decision problem:
instances for which the answer is 'yes'
no-instances of a decision problem:
instances for which the answer is 'no'

Self-Accepting: Given a TM T, does T accept the string e(T)?

Three languages corresponding to this problem:

- 1. SA: strings representing yes-instances
- 2. *NSA*: strings representing no-instances
- 3. . . .

Self-Accepting: Given a TM T, does T accept the string e(T)?

Three languages corresponding to this problem:

- 1. SA: strings representing yes-instances
- 2. NSA: strings representing no-instances
- 3. E': strings not representing instances

For general decision problem P, an encoding e of instances I as strings e(I) over alphabet Σ is called *reasonable*, if

- 1. there is algorithm to decide if string over Σ is encoding e(I)
- 2. e is injective
- 3. string e(I) can be decoded

Some Crucial features of any encoding function *e*:

- 1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.
- 2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z.
- 3. If w = e(T) or w = e(z), there should be an algorithm for decoding w.

For general decision problem P and reasonable encoding e,

$$Y(P) = \{e(I) \mid I \text{ is yes-instance of } P\}$$

 $N(P) = \{e(I) \mid I \text{ is no-instance of } P\}$
 $E(P)' = (Y(P) \cup N(P))'$

E(P) is recursive

Definition 9.3. Decidable Problems If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ , we say that P is decidable if $Y(P) = \{e(I) \mid I \text{ is a yes-instance of } P\}$ is a recursive language.

Theorem 9.4. The decision problem *Self-Accepting* is undecidable. **Proof...**

For every decision problem, there is *complementary* problem P', obtained by changing 'true' to 'false' in statement.

Non-Self-Accepting:

Given a TM T, does T fail to accept e(T)?

Theorem 9.5. For every decision problem P, P is decidable if and only if the complementary problem P' is decidable.

Proof...

SA vs. NSA Self-Accepting vs. Non-Self-Accepting

9.2. Reductions and the Halting Problem

Definition 9.6. Reducing One Decision Problem to Another ... Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 $(P_1 \le P_2)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 ,
- such that
 for every I the answers for the two instances are the same,
 or I is a yes-instance of P₁
 if and only if F(I) is a yes-instance of P₂.

. . .

Theorem 9.7.

. . .

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$. If P_2 is decidable, then P_1 is decidable.

Informal proof:

Suppose that $P_1 \leq P_2$, and that function F maps instance I_1 of P_1 to instance $I_2 = F(I_1)$ of P_2 with same answer yes/no If we have an algorithm/TM A_2 to solve P_2 , then we also have an algorithm/TM A_1 to solve P_1 , as follows:

 A_1 :

Given instance I_1 of P_1 ,

- 1. construct $I_2 = F(I_1)$;
- 2. run A_2 on I_2 .

$$A_1: F A_2 \longrightarrow \text{yes/no}$$

 A_1 answers 'yes' for I_1 , if and only if A_2 answers 'yes' for I_2 , if and only $I_2 = F(I_1)$ is yes-instance of P_2 , if and only if I_1 is yes-instance of P_1

Two more decision problems:

Accepts: Given a TM T and a string x, is $x \in L(T)$?

Halts: Given a TM T and a string x, does T halt on input x?

Self-Accepting: Given a TM T, does T accept the string e(T)? Accepts: Given a TM T and a string x, is $x \in L(T)$?

Theorem 9.8. Both *Accepts* and *Halts* are undecidable. **Proof.**

1. Prove that Self-Accepting \leq Accepts ...

Definition 9.6. Reducing One Decision Problem to Another ... Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 $(P_1 \le P_2)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 ,
- such that
 for every I the answers for the two instances are the same,
 or I is a yes-instance of P₁
 if and only if F(I) is a yes-instance of P₂.

. . .

Accepts: Given a TM T and a string x, is $x \in L(T)$?

Halts: Given a TM T and a string x, does T halt on input x?

Theorem 9.8. Both *Accepts* and *Halts* are undecidable. **Proof.**

- 1. Prove that Self-Accepting < Accepts ...
- 2. Prove that $Accepts \leq Halts \dots$

Application:

```
n = 4;
while (n is the sum of two primes)
n = n + 2;
```

This program loops forever, if and only if Goldbach's conjecture is true.

Theorem 9.7.

. . .

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$. If P_2 is decidable, then P_1 is decidable.

Order $P_1 \leq P_2$

The formal proof of this result does not have to be known for the exam

9.3. More Decision Problems Involving Turing Machines

Accepts: Given a TM T and a string x, is $x \in L(T)$?

Instances are . . .

Halts: Given a TM T and a string x, does T halt on input x?

Instances are . . .

Self-Accepting: Given a TM T, does T accept the string e(T)? Instances are

```
Accepts: Given a TM T and a string x, is x \in L(T)?
```

Instances are . . .

Halts: Given a TM T and a string x, does T halt on input x? Instances are . . .

Self-Accepting: Given a TM T, does T accept the string e(T)? Instances are . . .

Now fix a TM T.

T-Accepts: Given a string x, does T accept x?

Instances are . . .

Decidable or undecidable ? (cf. **Exercise 9.7.**)

Exercise 9.7.

As discussed at the beginning of Section 9.3, there is at least one TM \it{T} such that the decision problem

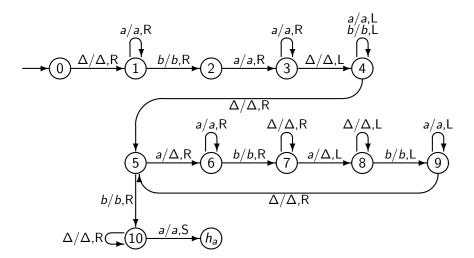
"Given w, does T accept w?"

is

unsolvable.

Show that every TM accepting a nonrecursive language has this property.

Example 7.7. Accepting $L = \{a^i b a^j \mid 0 \le i < j\}$



What if $x \notin L$?

Accepts: Given a TM T and a string x, is $x \in L(T)$?

Theorem 9.9. The following five decision problems are undecidable.

- 1. Accepts- Λ : Given a TM T, is $\Lambda \in L(T)$?
- Proof.
- 1. Prove that $Accepts \leq Accepts \Lambda \dots$

Reduction from *Accepts* to *Accepts*- Λ .

Instance of *Accepts* is (T_1, x) for TM T_1 and string x.

Instance of Accepts- Λ is TM T_2 .

$$T_2 = F(T_1, x) =$$

$$Write(x) \rightarrow T_1$$

 T_2 accepts Λ , if and only if T_1 accepts x.

If we had an algorithm/TM A_2 to solve Accepts- Λ , then we would also have an algorithm/TM A_1 to solve Accepts, as follows:

 A_1 :

Given instance (T_1, x) of Accepts,

- 1. construct $T_2 = F(T_1, x)$;
- 2. run A_2 on T_2 .

 A_1 answers 'yes' for (T_1, x) ,

if and only if A_2 answers 'yes' for T_2 ,

if and only if T_2 is yes-instance of Accepts- Λ (T_2 accepts Λ),

if and only if (T_1, x) is yes-instance of Accepts $(T_1 \text{ accepts } x)$

1. Accepts- Λ : Given a TM T, is $\Lambda \in L(T)$?

Proof.

1. Prove that $Accepts \leq Accepts - \Lambda \dots$

2. AcceptsEverything:

Given a TM T with input alphabet Σ , is $L(T) = \Sigma^*$?

Proof.

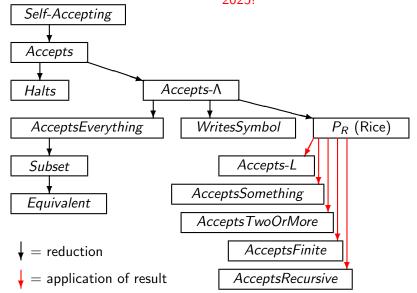
2. Prove that $Accepts-\Lambda \leq AcceptsEverything ...$

- 3. *Subset*: Given two TMs T_1 and T_2 , is $L(T_1) \subseteq L(T_2)$? **Proof**.
- 3. Prove that $AcceptsEverything \leq Subset \dots$

- 4. Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$ **Proof**.
- 4. Prove that Subset < Equivalent . . .

Undecidable Decision Problems (we have discussed)

WritesSymbol, Rice and its applications have not been discussed in fall 2025!



Planning

- tentamen, vrijdag 9 januari 2026, 09.00-12.00 uur
- vragenuur, donderdag 8 januari 2026, 11.00-12.45 uur

