Fundamentele Informatica 3

voorjaar 2020

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl

hoor-/werkcollege 7a, 27 mei 2020

- 8. Recursively Enumerable Languages
- 8.5. Not Every Language is Recursively Enumerable
 - 9. Undecidable Problems
 - 9.2. Reductions and the Halting Problem
- 9.3. More Decision Problems Involving Turing Machines

8.5. Not Every Language is Recursively Enumerable

reg. languages	FA	reg. grammar	reg. expression
determ. cf. languages	DPDA		
cf. languages	PDA	cf. grammar	
cs. languages	LBA	cs. grammar	
re. languages	TM	unrestr. grammar	

From Fundamentele Informatica 1:

Definition 8.24.

Countably Infinite and Countable Sets

A set A is *countably infinite* (the same size as \mathbb{N}) if there is a bijection $f: \mathbb{N} \to A$, or a list a_0, a_1, \ldots of elements of A such that every element of A appears exactly once in the list.

A is countable if A is either finite or countably infinite.

uncountable: not countable

Example 8.29. Languages Are Countable Sets

$$L \subseteq \mathbf{\Sigma}^* = \bigcup_{i=0}^{\infty} \mathbf{\Sigma}^i$$

Some Crucial features of any encoding function e:

- 1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.
- 2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z.
- 3. If w = e(T) or w = e(z), there should be an algorithm for decoding w.

Assumptions:

- 1. Names of the states are irrelevant.
- 2. Tape alphabet Γ of every Turing machine T is subset of infinite set $S = \{a_1, a_2, a_3, \ldots\}$, where $a_1 = \Delta$.

Definition 7.33. An Encoding Function

Assign numbers to each state:

$$n(h_a) = 1$$
, $n(h_r) = 2$, $n(q_0) = 3$, $n(q) \ge 4$ for other $q \in Q$.

Assign numbers to each tape symbol:

$$n(a_i) = i$$
.

Assign numbers to each tape head direction:

$$n(R) = 1$$
, $n(L) = 2$, $n(S) = 3$.

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p,\sigma)=(q,\tau,D)$

$$e(m) = 1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0$$

We list the moves of T in some order as m_1, m_2, \ldots, m_k , and we define

$$e(T) = e(m_1)0e(m_2)0...0e(m_k)0$$

If $z=z_1z_2\ldots z_j$ is a string, where each $z_i\in\mathcal{S}$,

$$e(z) = {0 \choose 1}^{n(z_1)} 0 1^{n(z_2)} 0 \dots 0 1^{n(z_j)} 0$$

Example 8.30. The Set of Turing Machines Is Countable

Let $\mathcal{T}(\Sigma)$ be set of Turing machines with input alphabet Σ There is injective function $e: \mathcal{T}(\Sigma) \to \{0,1\}^*$ (e is encoding function)

Hence (...), set of recursively enumerable languages is countable

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable

Hence, because \mathbb{N} and $\{0,1\}^*$ are the same size, there are uncountably many languages over $\{0,1\}$

Theorem 8.32. Not all languages are recursively enumerable. In fact, the set of languages over $\{0,1\}$ that are not recursively enumerable is uncountable.

(Not) Recursively enumerable

VS.

(Not) Countable

Theorem 8.4. If L_1 and L_2 are both recursively enumerable languages over Σ , then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also recursively enumerable.

Proof...

Exercise 8.3.

Is the following statement true or false?

If L_1, L_2, \ldots are any recursively enumerable subsets of Σ^* , then $\bigcup_{i=1}^{\infty} L_i$ is recursively enumerable.

Give reasons for your answer.

9.2. Reductions and the Halting Problem

For general decision problem P, an encoding e of instances I as strings e(I) over alphabet Σ is called *reasonable*, if

- 1. there is algorithm to decide if string over Σ is encoding e(I)
- 2. e is injective
- 3. string e(I) can be decoded

For general decision problem P and reasonable encoding e,

$$Y(P) = \{e(I) \mid I \text{ is yes-instance of } P\}$$

 $N(P) = \{e(I) \mid I \text{ is no-instance of } P\}$
 $E(P) = Y(P) \cup N(P)$

E(P) must be recursive

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ , we say that P is *decidable* if $Y(P) = \{e(I) \mid I \text{ is a yes-instance of } P\}$ is a recursive language.

Definition 9.6. Reducing One Decision Problem to Another . . .

Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 $(P_1 \le P_2)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 ,
- such that for every I the answers for the two instances are the same, or I is a yes-instance of P_1 if and only if F(I) is a yes-instance of P_2 .

. . .

Two more decision problems:

Accepts: Given a TM T and a string w, is $w \in L(T)$?

Halts: Given a TM T and a string w, does T halt on input w?

Theorem 9.9. The following five decision problems are undecidable.

1. Accepts- Λ : Given a TM T, is $\Lambda \in L(T)$?

Proof.

1. Prove that $Accepts \leq Accepts - \Lambda \dots$

Reduction from *Accepts* to *Accepts*- Λ .

Instance of *Accepts* is (T_1, x) for TM T_1 and string x. Instance of *Accepts*- Λ is TM T_2 .

$$T_2 = F(T_1, x) =$$

$$Write(x) \rightarrow T_1$$

 T_2 accepts Λ , if and only if T_1 accepts x.

If we had an algorithm/TM A_2 to solve Accepts- Λ , then we would also have an algorithm/TM A_1 to solve Accepts, as follows:

A_1 :

Given instance (T_1, x) of Accepts,

- 1. construct $T_2 = F(T_1, x)$;
- 2. run A_2 on T_2 .

 A_1 answers 'yes' for (T_1, x) , if and only if A_2 answers 'yes' for T_2 , if and only T_2 accepts Λ , if and only if T_1 accepts x.

Theorem 9.7.

. . .

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$. If P_2 is decidable, then P_1 is decidable.

Order $P_1 \leq P_2$

Proof...

In context of decidability: decision problem $P \approx \text{language } Y(P)$

Question

"is instance I of P a yes-instance?"

is essentially the same as

"does string x represent yes-instance of P?",

i.e.,

"is string $x \in Y(P)$?"

Theorem 9.9. The following five decision problems are undecidable.

2. AcceptsEverything:

Given a TM T with input alphabet Σ , is $L(T) = \Sigma^*$?

Proof.

2. Prove that $Accepts-\Lambda \leq AcceptsEverything ...$

Theorem 9.9. The following five decision problems are undecidable.

3. Subset: Given two TMs T_1 and T_2 , is $L(T_1) \subseteq L(T_2)$?

Proof.

3. Prove that $AcceptsEverything \leq Subset ...$

Theorem 9.9. The following five decision problems are undecidable.

4. Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Proof.

4. Prove that $Subset \leq Equivalent \dots$

'The intersection of two Turing machines'

Theorem 9.9. The following five decision problems are undecidable.

4. Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Proof.

4. Prove that $Subset \leq Equivalent \dots$

Subset: Given two TMs T_1 and T_2 , is $L(T_1) \subseteq L(T_2)$?

Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Exercise 9.10.

- **a.** Given two sets A and B, find two sets C and D, defined in terms of A and B, such that A = B if and only if $C \subseteq D$.
- **b.** Show that the problem *Equivalent* can be reduced to the problem *Subset*.

Accepts- Λ : Given a TM T, is $\Lambda \in L(T)$?

Theorem 9.9. The following five decision problems are undecidable.

5. WritesSymbol:

Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ?

Proof.

5. Prove that $Accepts-\Lambda \leq WritesSymbol...$

$AtLeast10MovesOn-\Lambda$:

Given a TM T, does T make at least ten moves on input Λ ?

WritesNonblank: Given a TM T, does T ever write a nonblank symbol on input Λ ?