
Fundamentele Informatica 3

voorjaar 2020

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 140 Snellius, tel. 071-527 2876

rvvliet(at)liacs(dot)nl

hoor-/werkcollege 7a, 27 mei 2020

8. Recursively Enumerable Languages

8.5. Not Every Language is Recursively Enumerable

9. Undecidable Problems

9.2. Reductions and the Halting Problem

9.3. More Decision Problems Involving Turing Machines

1

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/


8.5. Not Every Language
is Recursively Enumerable

reg. languages FA reg. grammar reg. expression

determ. cf. languages DPDA

cf. languages PDA cf. grammar

cs. languages LBA cs. grammar

re. languages TM unrestr. grammar

2



From Fundamentele Informatica 1:

Definition 8.24.

Countably Infinite and Countable Sets

A set A is countably infinite (the same size as N) if there is a

bijection f : N → A, or a list a0, a1, . . . of elements of A such that

every element of A appears exactly once in the list.

A is countable if A is either finite or countably infinite.

uncountable: not countable

3



Example 8.29. Languages Are Countable Sets

L ⊆ Σ∗ =
∞⋃

i=0

Σi

4



A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.

5



A slide from lecture 4

Assumptions:

1. Names of the states are irrelevant.

2. Tape alphabet Γ of every Turing machine T is subset

of infinite set S = {a1, a2, a3, . . .}, where a1 = ∆.

6



A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:

n(ha) = 1, n(hr) = 2, n(q0) = 3, n(q) ≥ 4 for other q ∈ Q.

Assign numbers to each tape symbol:

n(ai) = i.

Assign numbers to each tape head direction:

n(R) = 1, n(L) = 2, n(S) = 3.

7



A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form δ(p, σ) = (q, τ,D)

e(m) = 1n(p)01n(σ)01n(q)01n(τ)01n(D)0

We list the moves of T in some order as m1,m2, . . . ,mk, and we

define

e(T ) = e(m1)0e(m2)0 . . .0e(mk)0

If z = z1z2 . . . zj is a string, where each zi ∈ S,

e(z) = 01n(z1)01n(z2)0 . . .01n(zj)0

8



Example 8.30. The Set of Turing Machines Is Countable

Let T (Σ) be set of Turing machines with input alphabet Σ

There is injective function e : T (Σ) → {0,1}∗

(e is encoding function)

Hence (. . . ), set of recursively enumerable languages is countable

9



Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}∗ are the same size,

there are uncountably many languages over {0,1}

10



Theorem 8.32. Not all languages are recursively enumerable.

In fact, the set of languages over {0,1} that are not recursively

enumerable is uncountable.

11



(Not) Recursively enumerable

vs.

(Not) Countable

12



A slide from lecture 4:

Theorem 8.4. If L1 and L2 are both recursively enumerable

languages over Σ, then L1 ∪ L2 and L1 ∩ L2 are also recursively

enumerable.

Proof. . .

13



Exercise 8.3.

Is the following statement true or false?

If L1, L2, . . . are any recursively enumerable subsets of Σ∗, then

∪∞
i=1Li is recursively enumerable.

Give reasons for your answer.

14



9.2. Reductions and the Halting Problem

15



A slide from lecture 6:

For general decision problem P ,

an encoding e of instances I as strings e(I) over alphabet Σ

is called reasonable, if

1. there is algorithm to decide if string over Σ is encoding e(I)

2. e is injective

3. string e(I) can be decoded

16



A slide from lecture 6:

For general decision problem P and reasonable encoding e,

Y (P ) = {e(I) | I is yes-instance of P}

N(P ) = {e(I) | I is no-instance of P}

E(P ) = Y (P ) ∪N(P )

E(P ) must be recursive

17



A slide from lecture 6:

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of

instances of P over the alphabet Σ, we say that P is decidable if

Y (P ) = {e(I) | I is a yes-instance of P} is a recursive language.

18



A slide from lecture 6:

Definition 9.6. Reducing One Decision Problem to Another . . .

Suppose P1 and P2 are decision problems. We say P1 is reducible

to P2 (P1 ≤ P2)

• if there is an algorithm

• that finds, for an arbitrary instance I of P1, an instance F (I)

of P2,

• such that

for every I the answers for the two instances are the same,

or I is a yes-instance of P1

if and only if F (I) is a yes-instance of P2.

. . .

19



A slide from lecture 6:

Two more decision problems:

Accepts: Given a TM T and a string w, is w ∈ L(T ) ?

Halts: Given a TM T and a string w, does T halt on input w ?

20



A slide from lecture 6:

Theorem 9.9. The following five decision problems are unde-

cidable.

1. Accepts-Λ: Given a TM T , is Λ ∈ L(T ) ?

Proof.

1. Prove that Accepts ≤ Accepts-Λ . . .

21



Reduction from Accepts to Accepts-Λ.

Instance of Accepts is (T1, x) for TM T1 and string x.

Instance of Accepts-Λ is TM T2.

T2 = F (T1, x) =

Write(x) → T1

T2 accepts Λ, if and only if T1 accepts x.

22



If we had an algorithm/TM A2 to solve Accepts-Λ,

then we would also have an algorithm/TM A1 to solve Accepts,

as follows:

A1:

Given instance (T1, x) of Accepts,

1. construct T2 = F (T1, x);

2. run A2 on T2.

A1 answers ‘yes’ for (T1, x),

if and only if A2 answers ‘yes’ for T2,

if and only T2 accepts Λ,

if and only if T1 accepts x.

23



Theorem 9.7.

. . .

Suppose P1 and P2 are decision problems, and P1 ≤ P2. If P2 is

decidable, then P1 is decidable.

Order P1 ≤ P2

Proof. . .

24



In context of decidability: decision problem P ≈ language Y (P )

Question

“is instance I of P a yes-instance ?”

is essentially the same as

“does string x represent yes-instance of P ?”,

i.e.,

“is string x ∈ Y (P ) ?”

25



A slide from lecture 6:

Theorem 9.9. The following five decision problems are unde-

cidable.

2. AcceptsEverything:

Given a TM T with input alphabet Σ, is L(T ) = Σ∗ ?

Proof.

2. Prove that Accepts-Λ ≤ AcceptsEverything . . .

26



Theorem 9.9. The following five decision problems are unde-

cidable.

3. Subset: Given two TMs T1 and T2, is L(T1) ⊆ L(T2) ?

Proof.

3. Prove that AcceptsEverything ≤ Subset . . .

27



Theorem 9.9. The following five decision problems are unde-

cidable.

4. Equivalent: Given two TMs T1 and T2, is L(T1) = L(T2)

Proof.

4. Prove that Subset ≤ Equivalent . . .

28



‘The intersection of two Turing machines’

29



Theorem 9.9. The following five decision problems are unde-

cidable.

4. Equivalent: Given two TMs T1 and T2, is L(T1) = L(T2)

Proof.

4. Prove that Subset ≤ Equivalent . . .

30



Subset: Given two TMs T1 and T2, is L(T1) ⊆ L(T2) ?

Equivalent: Given two TMs T1 and T2, is L(T1) = L(T2)

Exercise 9.10.

a. Given two sets A and B, find two sets C and D, defined in

terms of A and B, such that A = B if and only if C ⊆ D.

b. Show that the problem Equivalent can be reduced to the

problem Subset.

31



Accepts-Λ: Given a TM T , is Λ ∈ L(T ) ?

Theorem 9.9. The following five decision problems are unde-

cidable.

5. WritesSymbol:

Given a TM T and a symbol a in the tape alphabet of T ,

does T ever write a if it starts with an empty tape ?

Proof.

5. Prove that Accepts-Λ ≤ WritesSymbol . . .

32



AtLeast10MovesOn-Λ:

Given a TM T , does T make at least ten moves on input Λ ?

WritesNonblank: Given a TM T , does T ever write a nonblank

symbol on input Λ ?

33


