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A slide from lecture 7

Chomsky hierarchy

3 reg. languages FA reg. grammar reg. expression

2 cf. languages PDA cf. grammar

1 cs. languages LBA cs. grammar

0 re. languages TM unrestr. grammar

S3 ⊆ S2 ⊆ S1 ⊆ R ⊆ S0

(modulo Λ)
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8.5. Not Every Language
is Recursively Enumerable
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From Fundamentele Informatica 1:

Definition 8.23.

A Set A of the Same Size as B or Larger Than B

Two sets A and B, either finite or infinite, are the same size if

there is a bijection f : A → B.

A is larger than B if some subset of A is the same size as B but

A itself is not.
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From Fundamentele Informatica 1:

Definition 8.24.

Countably Infinite and Countable Sets

A set A is countably infinite (the same size as N) if there is a

bijection f : N → A, or a list a0, a1, . . . of elements of A such that

every element of A appears exactly once in the list.

A is countable if A is either finite or countably infinite.

uncountable: not countable
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Theorem 8.25.

Every infinite set has a countably infinite subset,

and every subset of a countable set is countable.

Proof. . .

(proof of second claim is Exercise 8.35. . . )
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Example 8.26. The Set N× N is Countable

N× N = {(i, j) | i, j ∈ N}

although N× N looks much bigger than N

(0,0) (0,1) (0,2) (0,3) . . .
(1,0) (1,1) (1,2) (1,3) . . .
(2,0) (2,1) (2,2) (2,3) . . .
(3,0) (3,1) (3,2) (3,3) . . .
. . . . . . . . . . . . . . .
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Example 8.28.

A Countable Union of Countable Sets Is Countable

S =
∞⋃

i=0

Si

Same construction as in Example 8.26, but. . .
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Example 8.29. Languages Are Countable Sets

L ⊆ Σ∗ =
∞⋃

i=0

Σi

Two ways to list Σ∗

L ⊆ Σ∗
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A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.
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A slide from lecture 4

Assumptions:

1. Names of the states are irrelevant.

2. Tape alphabet Γ of every Turing machine T is subset

of infinite set S = {a1, a2, a3, . . .}, where a1 = ∆.
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A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:

n(ha) = 1, n(hr) = 2, n(q0) = 3, n(q) ≥ 4 for other q ∈ Q.

Assign numbers to each tape symbol:

n(ai) = i.

Assign numbers to each tape head direction:

n(R) = 1, n(L) = 2, n(S) = 3.
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A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form δ(p, σ) = (q, τ,D)

e(m) = 1n(p)01n(σ)01n(q)01n(τ)01n(D)0

We list the moves of T in some order as m1,m2, . . . ,mk, and we

define

e(T ) = e(m1)0e(m2)0 . . .0e(mk)0

If z = z1z2 . . . zj is a string, where each zi ∈ S,

e(z) = 01n(z1)01n(z2)0 . . .01n(zj)0
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Example 8.30. The Set of Turing Machines Is Countable

Let T (Σ) be set of Turing machines with input alphabet Σ

There is injective function e : T (Σ) → {0,1}∗

(e is encoding function)

Hence (. . . ), set of recursively enumerable languages is countable
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Exercise 8.41.

For each case below, determine whether the given set is count-

able or uncountable. Prove your answer.

a0. The set of all one-element subsets of N.

a1. The set of all two-element subsets of N.

a. The set of all three-element subsets of N.

b. The set of all finite subsets of N.
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Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}∗ are the same size,

there are uncountably many languages over {0,1}
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Example 8.31. The Set 2N Is Uncountable (continued)

No list of subsets of N is complete,

i.e., every list A0, A1, A2, . . . of subsets of N leaves out at least

one.

Take

A = {i ∈ N | i /∈ Ai}
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Example 8.31. The Set 2N Is Uncountable (continued)

A = {i ∈ N | i /∈ Ai}

A0 = {0,2,5,9, . . .}

A1 = {1,2,3,8,12, . . .}

A2 = {0,3,6}

A3 = ∅

A4 = {4}

A5 = {2,3,5,7,11, . . .}

A6 = {8,16,24, . . .}

A7 = N

A8 = {1,3,5,7,9, . . .}

A9 = {n ∈ N | n > 12}

. . .
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0 1 2 3 4 5 6 7 8 9 . . .
A0 = {0,2,5,9, . . .} 1 0 1 0 0 1 0 0 0 1 . . .
A1 = {1,2,3,8,12, . . .} 0 1 1 1 0 0 0 0 1 0 . . .
A2 = {0,3,6} 1 0 0 1 0 0 1 0 0 0 . . .
A3 = ∅ 0 0 0 0 0 0 0 0 0 0 . . .
A4 = {4} 0 0 0 0 1 0 0 0 0 0 . . .
A5 = {2,3,5,7,11, . . .} 0 0 1 1 0 1 0 1 0 0 . . .
A6 = {8,16,24, . . .} 0 0 0 0 0 0 0 0 1 0 . . .
A7 = N 1 1 1 1 1 1 1 1 1 1 . . .
A8 = {1,3,5,7,9, . . .} 0 1 0 1 0 1 0 1 0 1 . . .
A9 = {n ∈ N | n > 12} 0 0 0 0 0 0 0 0 0 0 . . .

. . . . . .
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0 1 2 3 4 5 6 7 8 9 . . .
A0 = {0,2,5,9, . . .} 1 0 1 0 0 1 0 0 0 1 . . .
A1 = {1,2,3,8,12, . . .} 0 1 1 1 0 0 0 0 1 0 . . .
A2 = {0,3,6} 1 0 0 1 0 0 1 0 0 0 . . .
A3 = ∅ 0 0 0 0 0 0 0 0 0 0 . . .
A4 = {4} 0 0 0 0 1 0 0 0 0 0 . . .
A5 = {2,3,5,7,11, . . .} 0 0 1 1 0 1 0 1 0 0 . . .
A6 = {8,16,24, . . .} 0 0 0 0 0 0 0 0 1 0 . . .
A7 = N 1 1 1 1 1 1 1 1 1 1 . . .
A8 = {1,3,5,7,9, . . .} 0 1 0 1 0 1 0 1 0 1 . . .
A9 = {n ∈ N | n > 12} 0 0 0 0 0 0 0 0 0 0 . . .

. . . . . .
A = {2,3,6,8,9, . . .} 0 0 1 1 0 0 1 0 1 1 . . .

Hence, there are uncountably many subsets of N.
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Theorem 8.32. Not all languages are recursively enumerable.

In fact, the set of languages over {0,1} that are not recursively

enumerable is uncountable.

Proof. . .

(including Exercise 8.38)
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Exercise 8.38.

Show that if S is uncountable and T is countable, then S − T is

uncountable.

Suggestion: proof by contradiction.
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Theorem 8.25.

Every infinite set has a countably infinite subset,

and every subset of a countable set is countable.

Proof. . .

(proof of second claim is Exercise 8.35. . . )
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Part of a slide from lecture 5

Theorem 8.9. For every language L ⊆ Σ∗,

• L is recursively enumerable

if and only if there is a TM enumerating L,
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9. Undecidable Problems

9.1. A Language
That Can’t Be Accepted,
and a Problem That Can’t Be Decided
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A slide from lecture 5

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T ) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.
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Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}∗ are the same size,

there are uncountably many languages over {0,1}
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Example 8.31. The Set 2N Is Uncountable (continued)

No list of subsets of N is complete,

i.e., every list A0, A1, A2, . . . of subsets of N leaves out at least

one.

Take

A = {i ∈ N | i /∈ Ai}
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Example 8.31. The Set 2N Is Uncountable (continued)

A = {i ∈ N | i /∈ Ai}

A0 = {0,2,5,9, . . .}

A1 = {1,2,3,8,12, . . .}

A2 = {0,3,6}

A3 = ∅

A4 = {4}

A5 = {2,3,5,7,11, . . .}

A6 = {8,16,24, . . .}

A7 = N

A8 = {1,3,5,7,9, . . .}

A9 = {n ∈ N | n > 12}

. . .
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0 1 2 3 4 5 6 7 8 9 . . .
A0 = {0,2,5,9, . . .} 1 0 1 0 0 1 0 0 0 1 . . .
A1 = {1,2,3,8,12, . . .} 0 1 1 1 0 0 0 0 1 0 . . .
A2 = {0,3,6} 1 0 0 1 0 0 1 0 0 0 . . .
A3 = ∅ 0 0 0 0 0 0 0 0 0 0 . . .
A4 = {4} 0 0 0 0 1 0 0 0 0 0 . . .
A5 = {2,3,5,7,11, . . .} 0 0 1 1 0 1 0 1 0 0 . . .
A6 = {8,16,24, . . .} 0 0 0 0 0 0 0 0 1 0 . . .
A7 = N 1 1 1 1 1 1 1 1 1 1 . . .
A8 = {1,3,5,7,9, . . .} 0 1 0 1 0 1 0 1 0 1 . . .
A9 = {n ∈ N | n > 12} 0 0 0 0 0 0 0 0 0 0 . . .

. . . . . .
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0 1 2 3 4 5 6 7 8 9 . . .
A0 = {0,2,5,9, . . .} 1 0 1 0 0 1 0 0 0 1 . . .
A1 = {1,2,3,8,12, . . .} 0 1 1 1 0 0 0 0 1 0 . . .
A2 = {0,3,6} 1 0 0 1 0 0 1 0 0 0 . . .
A3 = ∅ 0 0 0 0 0 0 0 0 0 0 . . .
A4 = {4} 0 0 0 0 1 0 0 0 0 0 . . .
A5 = {2,3,5,7,11, . . .} 0 0 1 1 0 1 0 1 0 0 . . .
A6 = {8,16,24, . . .} 0 0 0 0 0 0 0 0 1 0 . . .
A7 = N 1 1 1 1 1 1 1 1 1 1 . . .
A8 = {1,3,5,7,9, . . .} 0 1 0 1 0 1 0 1 0 1 . . .
A9 = {n ∈ N | n > 12} 0 0 0 0 0 0 0 0 0 0 . . .

. . . . . .
A = {2,3,6,8,9, . . .} 0 0 1 1 0 0 1 0 1 1 . . .

Hence, there are uncountably many subsets of N.
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Set-up of Example 8.31:

1. Start with list of all subsets of N: A0, A1, A2, . . .,

each one associated with specific element of N (namely i)

2. Define another subset A by:

i ∈ A ⇐⇒ i /∈ Ai

3. Conclusion: for all i, A 6= Ai

Hence, contradiction

Hence, there are uncountably many subsets of N
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Set-up of constructing language that is not RE:

1. Start with list of RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

2. Define another language L by:

x ∈ L ⇐⇒ x /∈ (language that x is associated with)

3. Conclusion: for all i, L 6= L(Ti)

Hence, L is not RE
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e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
. . . . . .
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e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
. . . . . .

NSA 0 0 1 1 0 0 1 0 1 1 .

Hence, NSA is not recursively enumerable.
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A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.

37



Set-up of constructing language NSA that is not RE:

1. Start with list of RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

(namely e(Ti))

2. Define another language NSA by:

e(Ti) ∈ NSA ⇐⇒ e(Ti) /∈ L(Ti)

3. Conclusion: for all i, NSA 6= L(Ti)

Hence, NSA is not RE
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Set-up of constructing language NSA that is not RE:

1. Start with collection of RE languages over {0,1}

(which are subsets of {0,1}∗): {L(T ) | TM T}

each one associated with specific element of {0,1}∗

(namely e(T ))

2. Define another language NSA by:

e(T ) ∈ NSA ⇐⇒ e(T ) /∈ L(T )

3. Conclusion: for all TM T , NSA 6= L(T )

Hence, NSA is not RE
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Set-up of constructing language L that is not RE:

1. Start with list of RE languages over {0,1}

(which are subsets of {0,1}∗): L(T0), L(T1), L(T2), . . .

each one associated with specific element of {0,1}∗

(namely xi)

2. Define another language L by:

xi ∈ L ⇐⇒ xi /∈ L(Ti)

3. Conclusion: for all i, L 6= L(Ti)

Hence, L is not RE

Every infinite list x0, x1, x2, . . . of different elements of {0,1}∗

yields language L that is not RE
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Λ 0 1 00 01 10 11 000 001 010 . . .
L(T0) 1 0 1 0 0 1 0 0 0 1 . . .
L(T1) 0 1 1 1 0 0 0 0 1 0 . . .
L(T2) 1 0 0 1 0 0 1 0 0 0 . . .
L(T3) 0 0 0 0 0 0 0 0 0 0 . . .
L(T4) 0 0 0 0 1 0 0 0 0 0 . . .
L(T5) 0 0 1 1 0 1 0 1 0 0 . . .
L(T6) 0 0 0 0 0 0 0 0 1 0 . . .
L(T7) 1 1 1 1 1 1 1 1 1 1 . . .
L(T8) 0 1 0 1 0 1 0 1 0 1 . . .
L(T9) 0 0 0 0 0 0 0 0 0 0 . . .
. . . . . .

newL 0 0 1 1 0 0 1 0 1 1 . . .

Hence, newL is not recursively enumerable.
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Definition 9.1. The Languages NSA and SA

Let

NSA = {e(T ) | T is a TM, and e(T ) /∈ L(T )}

SA = {e(T ) | T is a TM, and e(T ) ∈ L(T )}

(NSA and SA are for “non-self-accepting” and “self-accepting.”)
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A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.
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Theorem 9.2. The language NSA is not recursively enumerable.

The language SA is recursively enumerable but not recursive.

Proof. . .
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Exercise 9.2.

Describe how a universal Turing machine could be used in the

proof that SA is recursively enumerable.
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