Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

college 9, 2 april 2012

7. Turing Machines
7.7. Nondeterministic Turing Machines
7.8. Universal Turing Machines
8. Recursively Enumerable Languages

Ν

7.7. Nondeterministic Turing Machines

Definition 7.1. Turing machines

 \triangleright Turing machine (TM) is a 5-tuple $T=(Q,\Sigma,\Gamma,q_0,\delta)$, where

Q is a finite set of states. The two halt states h_a and h_r are not elements of Q.

the input alphabet, and Γ , the tape alphabet, are both finite ts, with $\Sigma\subseteq\Gamma$. The blank symbol Δ is not an element of Γ .

 q_{0} , the initial state, is an element of Q

 δ is the transition function:

$$\delta: Q \times (\Gamma \cup \{\Delta\}) \to (Q \cup \{h_a, h_r\}) \times (\Gamma \cup \{\Delta\}) \times \{R, L, S\}$$

Nondeterministic Turing machine.

There may be more than one move for a state-symbol pair.

Same notation:

 $wpax \vdash_T yqbz$ $wpax \vdash_T^* yqbz$

 \triangleright string \boldsymbol{x} is accepted by T if

 $q_0 \Delta x \vdash_T^* w h_a y$

for some strings $w, y \in (\Gamma \cup \{\Delta\})^*$

NTM useful for producing output, but not for computing function.

Example 7.28. The Set of Composite Natural Numbers.

$$NB
ightarrow G2
ightarrow NB
ightarrow G2
ightarrow PB
ightarrow M
ightarrow PB
ightarrow Equal$$

Take $x = 1^{15}$

Theorem 7.31.

For every nondeterministich TM $T=(Q,\Sigma,\Gamma,q_0,\delta)$, there is an ordinary (deterministic) TM $T_1=(Q_1,\Sigma,\Gamma_1,q_1,\delta_1)$ with $L(T_1)=L(T)$.

Proof...

Definition 7.32. Universal Turing Machines

e(T)e(z), where A universal Turing machine is a Turing machine T_u that works as follows. It is assumed to receive an input string of the form

7.8.

Universal Turing Machines

T is an arbitrary TM,
z is a string over the input alphabet of T,
and e is an encoding function whose values are strings in {0,1}*.

The computation performed by T_{u} on this input string satisfies

- these two properties: 1. T_u accepts the string e(T)e(z) if and only if T accepts z. 2. If T accepts z and produces output y, then T_u produces output

Crucial features of any encoding function e:

- 1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.
 2. A string w should represent at most one Turing machine, or at most one string z.
 3. If w=e(T) or w=e(z), there should be an algorithm for decoding w.

9

10

Assumptions:

- 1 Names of the states are irrelevant.
- 2. Tape alphabet Γ of every Turing machine T is subset of infinite set $S=\{a_1,a_2,a_3,\ldots\}$, where $a_1=\Delta$.

Definition 7.33. An Encoding Function

Assign numbers to each state:
$$n(h_a)=1,\ n(h_r)=2,\ n(q_0)=3,\ n(q)\geq 4$$
 for other $q\in Q$.

Assign numbers to each tape symbol:

Assign numbers to each tape head direction: $n(R)=1,\ n(L)=2,\ n(S)=3.$

11

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p,\sigma)=(q,\tau,D)$

$$e(m) = 1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0$$

define We list the moves of T in some order as m_1, m_2, \ldots, m_k , and we

$$e(T) = e(m_1)0e(m_2)0...0e(m_k)0$$

is a string, where each $z_i \in \mathcal{S}$,

$$e(z) = {01}^{n(z_1)} {01}^{n(z_2)} {0...01}^{n(z_j)} {0}$$

12

Theorem 7.36. Let $E=\{e(T)\mid T \text{ is a Turing machine}\}$. Then for every $x\in\{0,1\}^*$, $x\in E$ if and only if all these conditions are

1. \boldsymbol{x} matches the regular expression

satisfied:

Example 7.34. A Sample Encoding of a TM

$$(11*0)^50((11*0)^50)^*$$

so that it can be viewed as a sequence of one or more 5-tuples.

Theorem 7.36. Let $E=\{e(T)\mid T \text{ is a Turing machine}\}$. Then for every $x\in\{0,1\}^*$, $x\in E$ if and only if all these conditions are satisfied:

- 1. x matches the regular expression $(11^*0)^50((11^*0)^50)^*$ so that it can be viewed as a sequence of one or more 5-tuples.
- 2. No two substrings of x representing 5-tuples can have the same first two parts (no move can appear twice, and there can't be two different moves for a given combination of state and tape
- None of the 5-tuples can have first part 1 or 11 (there can be no moves from a halting state).
- 4. The last part of each 5-tuple must be 1, 11, or 111 (it must represent a direction).

14

- $\overset{\circ}{\circ}$ Recursively Enumerable Languages
- ∞ 'n Recursively Enumerable and Recursive

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language $L\subseteq \Sigma^*$, if L(T)=L.

T decides L, if T computes the characteristic function $\chi_L: \Sigma^* \to \{0,1\}$

A language L is recursively enumerable, if there is a TM that accepts L,

and L is $\it{recursive}$, if there is a TM that decides \it{L} .

17

18

Theorem 8.2.Every recursive language is recursively enumerable.

Proof...

Morgen publicatie Huiswerkopgave 3

Volgende week maandag 9 april 2012: geen college (tweede paas-

Theorem 8.3. If $L\subseteq \Sigma^*$ is accepted by a TM T that halts on every input string, then L is recursive.

Proof...

Volgende week dinsdag 10 april 2012: 1 uur hoorcollege, 1 uur werkcollege

20

19