Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

college 8, 26 maart 2012

7. Turing Machines
7.4. Combining Turing Machines
7.5. Multitape Turing Machines
7.6. The Church-Turing Thesis
7.7. Nondeterministic Turing Machines

Huiswerkopgave 2, inleverdatum 27 maart 2012, 13:45 uur

Volgende week publicatie Huiswerkopgave 3

Ν

7.4. Combining Turing Machines

NB

Example 7.17. Finding the Next Blank or the Previous Blank

PB

ω

4

Example 7.20. Inserting and Deleting a Symbol

Delete: from $x\underline{\sigma}y$ to $x\underline{y}$

 $Insert(\sigma)$: from $x\underline{y}$ to $x\underline{\sigma}y$

N.B.: y does not contain blanks

Example 7.21. Erasing the Tape from the current position to the right

Example 7.24. Comparing Two Strings

Equal: accept $\triangle x \triangle y$ if x=y, and reject if $x \neq y$

7.5. Multitape Turing Machines

Definition 7.1. Turing machines

A Turing machine (TM) is a 5-tuple $T=(Q,\Sigma,\Gamma,q_0,\delta)$, where

Q is a finite set of states. The two halt states h_a and h_r are not elements of Q.

 Σ , the input alphabet, and Γ , the tape alphabet, are both finite sets, with $\Sigma \subseteq \Gamma$. The *blank* symbol Δ is not an element of Γ .

 q_{0} , the initial state, is an element of \mathcal{Q}

 δ is the transition function:

$$\delta: Q \times (\Gamma \cup \{\Delta\}) \to (Q \cup \{h_{a_t}h_r\}) \times (\Gamma \cup \{\Delta\}) \times \{R, L, S\}$$

Notation:

description of tape contents: $x\underline{\sigma}y$ or $x\underline{y}$

 $configuration \ xqy = xqy \Delta = xqy \Delta \Delta$

initial configuration corresponding to input x: $q_0 \Delta x$

In the third edition of the book, a configuration is denoted as $(q,x\underline{y})$ or $(q,x\underline{\sigma}y)$ instead of xqy or $xq\sigma y$. This old notation is also allowed for Fundamentele Informatica 3.

11

12

Theorem 7.26. For every 2-tape TM $T=(Q,\Sigma,\Gamma,q_0,\delta)$, there is an ordinary 1-tape TM $T_1=(Q_1,\Sigma,\Gamma_1,q_1,\delta_1)$ with $\Gamma\subseteq\Gamma_1$, such that

- 1. For every $x\in \Sigma^*$, T accepts x if and only if T_1 accepts x, and T rejects x if and only if T_1 rejects x. (In particular, $L(T)=L(T_1)$.)
- Ņ For every $x \in \Sigma^*$

 $(q_0, \underline{\Delta}x, \underline{\Delta}) \vdash_T^* (h_a, y\underline{a}z, u\underline{b}v)$

then for some strings $y, z, u, v \in (\Gamma \cup \{\Delta\})^*$ and symbols $a, b \in \Gamma \cup \{\Delta\}$,

 $q_1 \Delta x \vdash_{T_1}^* y h_a az$

13

7.6. The Church-Turing Thesis

Turing machine is general model of computation.

(by human computer, team of humans, electronic computer) can be carried out by a $\ensuremath{\mathsf{TM}}$. (Alonzo Church, 1930s) Any algorithmic procedure that can be carried out at all

2-Tape TM $T=(Q,\Sigma,\Gamma,q_0,\delta)$, where

 $\delta: \mathcal{Q} \times (\Gamma \cup \{\Delta\})^2 \to (\mathcal{Q} \cup \{h_a, h_r\}) \times (\Gamma \cup \{\Delta\})^2 \times \{R, L, S\}^2$

10

Configuration of 2-tape TM is

 $(q, x_1\underline{a_1}y_1, x_2\underline{a_2}y_2)$

Initial configuration corresponding to input string \boldsymbol{x} is

 $(q_0, \underline{\Delta}x, \underline{\Delta})$

Output will appear on first tape

Corollary 7.27.

Every language that is accepted by a 2-tape TM can be accepted by an ordinary 1-tape TM, and every function that is computed by a 2-tape TM can be computed by an ordinary TM.

14

Evidence for Church-Turing thesis:

- 1. Nature of the model
- Ŋ Various enhancements of TM do not change computing
- Other theoretical models of computation have been proposed.
 Various notational systems have been suggested as ways of describing computations. All of them equivalent to TM.
- to be considered mented on TM. No one has suggested any type of computation that ought be considered 'algorithmic procedure' and cannot be imple-

15

7.7. Nondeterministic Turing Machines

A Turing machine (TM) is a 5-tuple $T=(Q,\Sigma,\Gamma,q_0,\delta)$, where

Definition 7.1. Turing machines

Q is a finite set of states. The two halt states h_α and h_r are not elements of Q.

 $\Sigma,$ the input alphabet, and $\Gamma,$ the tape alphabet, are both finite sets, with $\Sigma\subseteq\Gamma.$ The blank symbol Δ is not an element of $\Gamma.$

 q_{O} , the initial state, is an element of Q.

 δ is the transition function:

$$\delta: Q \times (\Gamma \cup \{\Delta\}) \to (Q \cup \{h_a, h_r\}) \times (\Gamma \cup \{\Delta\}) \times \{R, L, S\}$$

17

$$NB
ightarrow G2
ightarrow NB
ightarrow G2
ightarrow PB
ightarrow M
ightarrow PB
ightarrow Equal$$

Example 7.28. The Set of Composite Natural Numbers.

Take
$$x=1^{15}$$

Nondeterministic Turing machine.

There may be more than one move for a state-symbol pair.

Same notation:

 $wpax \vdash_T yqbz$ A string x is accepted by T if $wpax \vdash_T^* yqbz$

 $q_0 \Delta x \vdash_T^* wh_a y$

for some strings $w, y \in (\Gamma \cup \{\Delta\})^*$.

NTM useful for producing output, but not for computing function.

19

20

Example 7.30. The Language of Prefixes of Elements of L.

Let
$$L=L(T)$$
. Then

$$P(L) = \{x \in \Sigma^* \mid \ xy \in L \text{ for some } y \in \Sigma^* \}$$

$$NB \rightarrow G \rightarrow Delete \rightarrow PB \rightarrow T$$