Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071 rvvliet(at)liacs.nl 071-527 5777

college 7, 19 maart 2012

7.3. 7. Turing Machines
7.1. A General Model of Computation
7.2. Turing Machines as Language Acceptors
Turing Machines That Compute Partial Functions
7.4. Combining Turing Machines

7.2. Turing Machines as Language Acceptors

Example 7.3. A TM Accepting a Regular Language

 $L = \{a, b\}^* \{ab\} \{a, b\}^* \cup \{a, b\}^* \{ba\}$

First a finite automaton, then a Turing machine

Ν

Example 7.5. A TM Accepting $XX = \{xx \mid x \in \{a,b\}^*\}$

7.1. A General Model of Computation

Definition 7.1. Turing machines

A Turing machine (TM) is a 5-tuple $T=(Q,\Sigma,\Gamma,q_0,\delta)$, where

Q is a finite set of states. The two halt states h_a and h_r are not elements of Q.

 $\Sigma,$ the input alphabet, and $\Gamma,$ the tape alphabet, are both finite sets, with $\Sigma\subseteq\Gamma.$ The blank symbol Δ is not an element of $\Gamma.$

 q_0 , the initial state, is an element of Q.

 δ is the transition function: ...

ω

Definition 7.1. Turing machines

A Turing machine (TM) is a 5-tuple $T=(\mathcal{Q},\Sigma,\Gamma,q_0,\delta)$, where

Q is a finite set of states. The two halt states h_a and h_r are not elements of Q.

 $\Sigma,$ the input alphabet, and $\Gamma,$ the tape alphabet, are both finite sets, with $\Sigma\subseteq\Gamma.$ The blank symbol Δ is not an element of $\Gamma.$

 q_{0} , the initial state, is an element of \mathcal{Q}

 δ is the transition function:

$$\delta: Q \times (\Gamma \cup \{\Delta\}) \to (Q \cup \{h_a, h_r\}) \times (\Gamma \cup \{\Delta\}) \times \{R, L, S\}$$

Interpretation of

$$\delta(p, X) = (q, Y, D)$$

If q is h_a or h_r , the move causes T to halt

What if D=L and T is on square 0?

- Normally, TM starts with

 input string starting in square 1 and all other squares blank,

 and its tape head on square 0.

Tape always contains finite number of non-blanks

Notation:

configuration...

Notation:

description of tape contents: $x\underline{\sigma}y$ or $x\underline{y}$ $x\underline{y}=x\underline{y}\Delta=x\underline{y}\Delta\Delta$ if $y=\Lambda$, then $x\underline{\Delta}$

configuration $xqy=xqy\Delta=xqy\Delta\Delta$ if $y=\Lambda$, then $xq\Delta$

In the third edition of the book, a configuration is denoted as $(q,x\underline{y})$ or $(q,x\underline{xy})$ instead of xqy or $xq\sigma y$. This old notation is also allowed for Fundamentele Informatica 3.

as

move: $\begin{array}{c} xqy \vdash_T zrw \\ xqy \vdash zrw \end{array}$

 $xqy \vdash_T^* zrw$ $xqy \vdash_T^* zrw$

initial configuration corresponding to input x: $q_0 \Delta x$

9

example: configuration $aabqa\Delta a$ and $\delta(q,a)=(r,\Delta,L)$

10

Definition 7.2. Acceptance by a TM

If $T=(Q,\Sigma,\Gamma,q_0,\delta)$ is a TM and $x\in\Sigma^*,$ x is accepted by T if

 $q_0 \Delta x \vdash_T^* w h_a y$

for some strings $w,y\in (\Gamma\cup\{\Delta\})^*$ (i.e., if, starting in the initial configuration corresponding to input x,T eventually halts in the accepting state).

To illustrate that a Turing machine T may run forever for an input that is not in L(T). No problem!

Example 7.7. Accepting $L = \{a^iba^j \mid 0 \le i < j\}$

N.B.: sequence of moves leading to h_a is unique

A language $L\subseteq \Sigma^*$ is accepted by T if T=L(T), where

 $L(T) = \{x \in \Sigma^* \mid \ x \text{ is accepted by } T \ \}$

11

12

7.3. Turing Machines That Compute Partial Functions

Definition 7.9. A Turing Machine Computing a Function

Let $T=(Q,\Sigma,\Gamma,q_0,\delta)$ be a Turing machine, k a natural number, and f a partial function on $(\Sigma^*)^k$ with values in Γ^* . We say that T computes f if for every (x_1,x_2,\ldots,x_k) in the domain of f.

$$q_0 \Delta x_1 \Delta x_2 \Delta \dots \Delta x_k \vdash_T^* h_a \Delta f(x_1, x_2, \dots, x_k)$$

and no other input that is a k-tuple of strings is accepted by T.

A partial function $f:(\Sigma^*)^k\to\Gamma^*$ is Turing-computable, or simply computable, if there is a TM that computes f.

Example 7.10. The Reverse of a String

Study this example yourself.

14

Example 7.12. The Quotient and Remainder Mod 2

15

16

Example 7.14. The Characteristic Function of a Set

$$\chi_L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$$

Example 7.14. The Characteristic Function of a Set

$$\chi_L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$$

From computing χ_L to accepting L

From accepting L to computing χ_L

17

18

Many notations

7.4. Combining Turing Machines

Example 7.17. Finding the Next Blank or the Previous Blank

NB

PB

Example 7.18. Copying a String

Copy: from $\underline{\Delta}x$ to $\underline{\Delta}x\Delta x$

19

20

Example 7.20. Inserting and Deleting a Symbol

Delete: from $x\underline{\sigma}y$ to $x\underline{y}$

 $Insert(\sigma)$: from $x\underline{y}$ to $x\underline{\sigma}y$

N.B.: y does not contain blanks

21

22

Example 7.21. Erasing the Tape from the current position to the right

Example 7.24. Comparing Two Strings

Equal: accept $\triangle x \triangle y$ if x = y, and reject if $x \neq y$

Example 7.25. Accepting the Language of Palindromes

Copy
ightarrow NB
ightarrow R
ightarrow PB
ightarrow Equal

24

23