Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

college 7, 19 maart 2012

7. Turing Machines
7.1. A General Model of Computation
7.2. Turing Machines as Language Acceptors
7.3. Turing Machines That Compute Partial Functions
7.4. Combining Turing Machines

7.2. Turing Machines as Language Acceptors

Example 7.3. A TM Accepting a Regular Language

 $L = \{a, b\}^* \{ab\} \{a, b\}^* \cup \{a, b\}^* \{ba\}$

First a finite automaton, then a Turing machine

Example 7.5. A TM Accepting $XX = \{xx \mid x \in \{a, b\}^*\}$

7.1. A General Model of Computation

Definition 7.1. Turing machines

A Turing machine (TM) is a 5-tuple $T = (Q, \Sigma, \Gamma, q_0, \delta)$, where

Q is a finite set of states. The two *halt* states h_a and h_r are not elements of Q.

 Σ , the input alphabet, and Γ , the tape alphabet, are both finite sets, with $\Sigma \subseteq \Gamma$. The *blank* symbol Δ is not an element of Γ .

 q_0 , the initial state, is an element of Q.

 δ is the transition function: . . .

Definition 7.1. Turing machines

A Turing machine (TM) is a 5-tuple $T = (Q, \Sigma, \Gamma, q_0, \delta)$, where

Q is a finite set of states. The two *halt* states h_a and h_r are not elements of Q.

 Σ , the input alphabet, and Γ , the tape alphabet, are both finite sets, with $\Sigma \subseteq \Gamma$. The *blank* symbol Δ is not an element of Γ .

 q_0 , the initial state, is an element of Q.

 δ is the transition function:

 $\delta: Q \times (\Gamma \cup \{\Delta\}) \to (Q \cup \{h_a, h_r\}) \times (\Gamma \cup \{\Delta\}) \times \{R, L, S\}$

Interpretation of

$$\delta(p,X) = (q,Y,D)$$

If q is h_a or h_r , the move causes T to halt

What if D = L and T is on square 0?

Normally, TM starts with

- input string starting in square 1 and all other squares blank,
- and its tape head on square 0.

Tape always contains finite number of non-blanks.

Notation:

configuration...

Notation:

description of tape contents: $x\underline{\sigma}y$ or $x\underline{y}$ $x\underline{y} = x\underline{y}\Delta = x\underline{y}\Delta\Delta$ if $y = \Lambda$, then $x\underline{\Delta}$

configuration
$$xqy = xqy\Delta = xqy\Delta\Delta$$

if $y = \Lambda$, then $xq\Delta$

move: $xqy \vdash_T zrw$ $xqy \vdash_T^* zrw$ $xqy \vdash zrw$ $xqy \vdash^* zrw$

example: configuration $aabqa\Delta a$ and $\delta(q, a) = (r, \Delta, L)$

initial configuration corresponding to input x: $q_0 \Delta x$

In the third edition of the book, a configuration is denoted as $(q, x\underline{y})$ or $(q, x\underline{\sigma}y)$ instead of xqy or $xq\sigma y$. This old notation is also allowed for Fundamentele Informatica 3.

Definition 7.2. Acceptance by a TM

If $T = (Q, \Sigma, \Gamma, q_0, \delta)$ is a TM and $x \in \Sigma^*$, x is accepted by T if

$$q_0 \Delta x \vdash^*_T wh_a y$$

for some strings $w, y \in (\Gamma \cup \{\Delta\})^*$ (i.e., if, starting in the initial configuration corresponding to input x, T eventually halts in the accepting state).

N.B.: sequence of moves leading to h_a is unique

A language $L \subseteq \Sigma^*$ is accepted by T if T = L(T), where

 $L(T) = \{ x \in \Sigma^* \mid x \text{ is accepted by } T \}$

Example 7.7. Accepting $L = \{a^i b a^j \mid 0 \le i < j\}$

To illustrate that a Turing machine T may run forever for an input that is not in L(T). No problem!

7.3. Turing Machines That Compute Partial Functions

Definition 7.9. A Turing Machine Computing a Function

Let $T = (Q, \Sigma, \Gamma, q_0, \delta)$ be a Turing machine, k a natural number, and f a partial function on $(\Sigma^*)^k$ with values in Γ^* . We say that T computes f if for every (x_1, x_2, \ldots, x_k) in the domain of f,

$$q_0 \Delta x_1 \Delta x_2 \Delta \ldots \Delta x_k \vdash_T^* h_a \Delta f(x_1, x_2, \ldots, x_k)$$

and no other input that is a k-tuple of strings is accepted by T.

A partial function $f: (\Sigma^*)^k \to \Gamma^*$ is Turing-computable, or simply computable, if there is a TM that computes f.

Example 7.10. The Reverse of a String

 $\Delta a a b a b$ $\Delta A a b a b$ $\Delta A a b a b$ $\Delta B a b a A$ $\Delta B A b b A A$ $\Delta B A b b A A$

Study this example yourself.

Example 7.12. The Quotient and Remainder Mod 2

Example 7.14. The Characteristic Function of a Set

$$\chi_L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$$

Example 7.14. The Characteristic Function of a Set

$$\chi_L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$$

From computing χ_L to accepting L

From accepting L to computing χ_L

7.4. Combining Turing Machines

Many notations

Example 7.17. Finding the Next Blank or the Previous Blank

NB

PB

Example 7.18. Copying a String

Copy: from Δx to $\Delta x \Delta x$

Example 7.20. Inserting and Deleting a Symbol

Delete: from $x \underline{\sigma} y$ to x y

Insert(σ): from xy to $x\underline{\sigma}y$

N.B.: y does not contain blanks

Example 7.21. Erasing the Tape from the current position to the right

Example 7.24. Comparing Two Strings

Equal: accept $\Delta x \Delta y$ if x = y, and reject if $x \neq y$ **Example 7.25.** Accepting the Language of Palindromes

 $Copy \rightarrow NB \rightarrow R \rightarrow PB \rightarrow Equal$