Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

college 7, 19 maart 2012

7. Turing Machines 7.1. A General Model of Computation 7.2. Turing Machines as Language Acceptors 7.3. Turing Machines That Compute Partial Functions 7.4. Combining Turing Machines

7.2. Turing Machines as Language Acceptors

Example 7.3. A TM Accepting ^a Regular Language

 $L = \{a, b\}^*\{ab\}\{a, b\}^* \cup \{a, b\}^*\{ba\}$

First a finite automaton, then a Turing machine

Example 7.5. A TM Accepting $XX = \{xx \mid x \in \{a, b\}^*\}$

7.1. A General Model of Computation

Definition 7.1. Turing machines

A Turing machine (TM) is a 5-tuple $T=(Q,\mathsf{\Sigma},\mathsf{\Gamma},q_0,\delta)$, where

Q is a finite set of states. The two halt states h_a and h_r are not elements of $Q.$

 Σ , the input alphabet, and Γ , the tape alphabet, are both finite sets, with $\Sigma \subseteq \Gamma$. The *blank* symbol Δ is not an element of Γ .

 q_{O} , the initial state, is an element of $Q.$

 δ is the transition function: ...

Definition 7.1. Turing machines

A Turing machine (TM) is a 5-tuple $T = (Q, \Sigma, \Gamma, q_0, \delta)$, where

Q is a finite set of states. The two *halt* states h_a and h_r are not elements of Q.

 Σ , the input alphabet, and Γ , the tape alphabet, are both finite sets, with $\Sigma \subseteq \Gamma$. The *blank* symbol Δ is not an element of Γ .

 q_0 , the initial state, is an element of Q.

 δ is the transition function:

 $\delta: Q \times (\Gamma \cup {\Delta}) \rightarrow (Q \cup \{h_a, h_r\}) \times (\Gamma \cup {\Delta}) \times \{R, L, S\}$

Interpretation of

$$
\delta(p, X) = (q, Y, D)
$$

If q is h_a or h_r , the move causes T to halt

What if $D = L$ and T is on square 0?

Normally, TM starts with

- input string starting in square 1 and all other squares blank,
- and its tape head on square 0.

Tape always contains finite number of non-blanks.

Notation:

configuration. . .

Notation:

description of tape contents: $x\underline{\sigma}y$ or xy $xy = xy\Delta = xy\Delta\Delta$ if $y = \Lambda$, then $x \underline{\Delta}$

$$
configuration \; xqy = xqy\Delta = xqy\Delta\Delta
$$

if $y = \Lambda$, then $xq\Delta$

move: $\; x q y \vdash_T z r w \quad x q y \vdash_T^* z r w$ $xqy \vdash zrw \quad xqy \vdash^* zrw$

example: configuration $aabqa\Delta a$ and $\delta(q,a)=(r,\Delta,L)$

initial configuration corresponding to input x : $q_0\Delta x$

In the third edition of the book, ^a configuration is denoted as (q,xy) or $(q,x\underline{\sigma}y)$ instead of xqy or $xq\sigma y.$ This old notation is also allowed for Fundamentele Informatica 3.

Definition 7.2. Acceptance by ^a TM

If $T = (Q, \Sigma, \Gamma, q_0, \delta)$ is a TM and $x \in \Sigma^*$, x is accepted by T if

$$
q_0 \Delta x \vdash_T^* wh_ay
$$

for some strings $w, y \in (\Gamma \cup {\{\Delta\}})^*$ (i.e., if, starting in the initial configuration corresponding to input x, T eventually halts in the accepting state).

N.B.: sequence of moves leading to h_a is unique

A language $L \subseteq \Sigma^*$ is accepted by T if $T = L(T)$, where

 $L(T) = \{x \in \Sigma^* \mid x \text{ is accepted by } T \}$

Example 7.7. Accepting $L = \{a^iba^j \mid 0 \le i < j\}$

To illustrate that a Turing machine T may run forever for an input that is not in $L(T)$. No problem!

7.3. Turing Machines That Compute Partial Functions

Definition 7.9. A Turing Machine Computing ^a Function

Let $T=(Q,\mathsf{\Sigma},\mathsf{\Gamma},q_0,\delta)$ be a Turing machine, k a natural number, and f a partial function on $(\mathsf{\Sigma}^*)^k$ with values in $\mathsf{\Gamma}^*$. We say that T computes f if for every (x_1,x_2,\ldots,x_k) in the domain of f ,

$$
q_0 \Delta x_1 \Delta x_2 \Delta \ldots \Delta x_k \vdash_T^* h_a \Delta f(x_1, x_2, \ldots, x_k)
$$

and no other input that is a $k\text{-tuple}$ of strings is accepted by $T.$

A partial function $f: (\Sigma^*)^k \to \Gamma^*$ is Turing-computable, or simply computable, if there is a TM that computes $f.$

Example 7.10. The Reverse of a String

 Δa a b a b $\Delta A a b a b$ $\Delta A a b a A$ $\Delta Ba\ b\ aA$ $\triangle BA b a A$ \triangle BA b AA \triangle BA b AA $\triangle BABA$ $\underline{\Delta}\,b$ a b a a

Study this example yourself.

Example 7.12. The Quotient and Remainder Mod 2

Example 7.14. The Characteristic Function of ^a Set

$$
\chi_L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}
$$

Example 7.14. The Characteristic Function of ^a Set

$$
\chi_L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}
$$

From computing χ_L to accepting L

From accepting L to computing χ_L

7.4. Combining Turing Machines

Many notations

Example 7.17. Finding the Next Blank or the Previous Blank

NB

PB

Example 7.18. Copying a String

Copy: from Δx to $\Delta x \Delta x$

Example 7.20. Inserting and Deleting ^a Symbol

Delete: from x_2y to xy

Insert(σ): from xy to $x\underline{\sigma}y$

 $N.B.: y$ does not contain blanks

Example 7.21. Erasing the Tape from the current position to the right Example 7.24. Comparing Two Strings

Equal: accept $\triangle x \triangle y$ if $x = y$, and reject if $x \neq y$

Example 7.25. Accepting the Language of Palindromes

 $Copy \rightarrow NB \rightarrow R \rightarrow PB \rightarrow Equal$