Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

college 5, 5 maart 2012

- 6. Context-Free and Non-Context-Free Languages
- 6.2. Intersections and Complements of CFLs
- 6.3. Decision Problems Involving Context-Free Languages

N

Huiswerkopgave 1, inleverdatum 6 maart 2012, 13:45 uur

Volgende week publicatie Huiswerkopgave 2

Closure properties:

CF languages	Reg. languages	
×	×	union
×	×	concat.
×	×	Kleene *
	×	intersect.
	×	complem.

6.2. Intersections and Complements of CFLs

ω

 $\textbf{Example 6.10.} \ \, \textbf{Two CFLs Whose Intersection Is Not a CFL}$

$$\begin{array}{ll} \textit{AnBnCn} &=& \{a^ib^ic^i \mid i \geq 0\} \\ &=& \{a^ib^ic^k \mid i,k \geq 0\} \cap \{a^ib^jc^j \mid i,j \geq 0\} \end{array}$$

Example 6.11. A CFL Whose Complement Is Not a CFL

$$L = XX' = \{a,b\}^* - XX$$
 (hence $L' = XX = \{xx \mid x \in \{a,b\}^*\})$

$$L \ = \ \{y \in \{a,b\}^* \mid \ |y| \text{ is odd}\}$$

$$\ \cup \ \{x_1x_2 \in \{a,b\}^* \mid \ |x_1| = |x_2| \text{ and } \ge 1 \text{ mismatch}\}$$

plements Example 6.12. Another Example with Intersections and Com-

Let

$$\begin{array}{lll} L_1 &=& \{a^i b^j c^k \mid 0 \leq i \leq j\} \\ L_2 &=& \{a^i b^j c^k \mid 0 \leq j \leq k\} \\ L_3 &=& \{a^i b^j c^k \mid 0 \leq k \leq i\} \end{array}$$

Then

$$AnBnCn = L_1 \cap L_2 \cap L_3$$

Example 6.12. Another Example ... (continued)

Let

$$\begin{array}{rcl} L_1 &=& \{a^i b^j c^k \mid i \leq j\} \\ L_2 &=& \{a^i b^j c^k \mid j \leq k\} \\ L_3 &=& \{a^i b^j c^k \mid k \leq i\} \end{array}$$

R \parallel ${a}^{*}{b}^{*}{c}^{*}$

Then

$$\begin{array}{ll} I &= R' \cup \{a^ib^jc^k \mid i>j\} \\ 2^i &= R' \cup \{a^ib^jc^k \mid j>k\} \\ 3^i &= R' \cup \{a^ib^jc^k \mid k>i\} \end{array}$$

|| || $(L_1' \cup L_2' \cup L_3')'$ $L_1 \cap L_2 \cap L_3$

AnBnCn

Back to regular languages...

Theorem 2.15 Suppose $M_1=(Q_1,\Sigma,q_1,A_1,\delta_1)$ and $M_2=(Q_2,\Sigma,q_2,A_2,\delta_2)$ are finite automata accepting L_1 and L_2 , respectively. Let M be the FA (Q,Σ,q_0,A,δ) , where $Q=Q_1\times Q_2$ $q_0=(q_1,q_2)$ and the transition function δ is defined by the formula $\delta((p,q),\sigma)=(\delta_1(p,\sigma),\delta_2(q,\sigma))$ for every $p\in Q_1$, every $q\in Q_2$, and every $\sigma\in \Sigma$.

Then 1. If $A=\{(p,q)|\ p\in A_1 \text{ or } q\in A_2\},$ M accepts the language $L_1\cup L_2.$ 2. If $A=\{(p,q)|\ p\in A_1 \text{ and } q\in A_2\},$ M accepts the language $L_1\cap L_2.$ 3. If $A=\{(p,q)|\ p\in A_1 \text{ and } q\notin A_2\}.$ M accepts the language $L_1\cap L_2.$

9

10

Theorem 6.13.

then $L_1 \cap L_2$ is a CFL. is a context-free language and L_2 is a regular language,

Sketch of Proof...

Let $M_1=(Q_1,\Sigma,\Gamma,q_1,Z_0,A_1,\delta_1)$ be a PDA accepting $L_1.$ Let $M_2=(Q_2,\Sigma,q_2,A_2,\delta_2)$ be an FA accepting $L_2.$

Then PDA $M=(Q,\Sigma,\Gamma,q_0,Z_0,A,\delta)$ with

$$Q = Q_1 \times Q_2$$
 $q_0 = (q_1, q_2)$ $A = A_1 \times A_2$

And $\delta \dots$?

11

Theorem 6.13.

Sketch of Proof... (continued)

1. For every
$$(p,q)\in Q_1\times Q_2,\ \sigma\in \Sigma$$
 and $Z\in \Gamma,$
$$\delta((p,q),\sigma,Z)\ =\ \{((p',q'),\alpha)\ |$$

 $(p',\alpha) \in \delta_1(p,\sigma,Z)$ and $q' = \delta_2(q,\sigma)$ }

12

Theorem 6.13.

Sketch of Proof... (continued)

1. For every $(p,q) \in Q_1 \times Q_2$, $\sigma \in \Sigma$ and $Z \in \Gamma$, $\delta((p,q),\sigma,Z) = \{((p',q'),\alpha) \mid$

 $(p',\alpha) \in \delta_1(p,\sigma,Z)$ and $q' = \delta_2(q,\sigma)$

 $\delta((p,q), \Lambda, Z) =$ $\{((p',q),\alpha)\mid$ $(p', \alpha) \in \delta_1(p, \Lambda, Z)$

Ŋ

For every $(p,q) \in Q_1 \times Q_2$ and $Z \in \Gamma$,

Theorem 6.13.

Sketch of Proof... (continued)

Now,

if and only if $(q_1,yz,Z_1)\vdash^n_{M_1}(p,z,\alpha)$ and $\delta^*(q_2,y)=q$

 $((q_1,q_2),yz,Z_1)\vdash^n_M ((p,q),z,\alpha)$

The details of the (inductive) proof of this statement do not have to be known for the exam.

14

6.3. Decision Problems Involving Free Languages Context-

Back to regular languages...

Example 2.34. Decision cepted by Finite Automata Decision Problems Involving Languages Ac-

1. Membership problem: Given an FA M and a string x over the alphabet of M,

<u>s</u>.

 $x \in L(M)$?

: Membership problem for context-free languages: Given a context-free grammar G and a string x, is $x \in L(G)$?

16

15

Back to regular languages...

Example 2.34. Decision cepted by Finite Automata Decision Problems Involving Languages Ac-

- Given an FA M, is L(M) nonempty?
- ω Given an FA M, is L(M) infinite?
- 2 Given a context-free language L, is L nonempty ?

3.2.1

 $\begin{aligned} |uv| &\leq n. \\ |v| &> 0 \text{ (i.e., } v \neq \Lambda). \\ \text{For every } i &\geq 0, \text{ the string } uv^iw \text{ also belongs to} \end{aligned}$

L

18

then for every $x\in L$ satisfying $|x|\geq n$, there are three strings u, v, and w such that x=uvw and the following three conditions are true:

guages Suppose L is a language over the alphabet Σ . If L is accepted by a finite automaton $M=(Q,\Sigma,q_0,A,\delta)$, and if n is the number of states of M,

Theorem 2.29. The Pumping Lemma for Regular Lan-

ω Given a context-free language L, is L infinite ?

17

guages Theorem 6.1. The Pumping Lemma for Context-Free Lan-

Suppose L is a context-free language. Then there is an integer n so that for every $u \in L$ with $|u| \geq n$, u can be written as u = vwxyz, for some strings v, w, x, y and z satisfying

- $|wy| \ge 0$
- ω p i
- $\begin{aligned} |wxy| &\leq n \\ \text{for every } m &\geq 0, \ vw^mxy^mz \in L \end{aligned}$

19

Back to regular languages...

- 4 Given FAs M_1 and M_2 , is $L(M_1) \cap L(M_2)$ nonempty ?
- 5 Given FAs M_1 and M_2 , is $L(M_1) \subseteq L(M_2)$?

4 Given CFGs G_1 and G_2 , is $L(G_1) \cap L(G_2)$ nonempty ?

5 Given CFGs G_1 and G_2 , is $L(G_1) \subseteq L(G_2)$?

20

Exercise.

5 4

Given FAs M_1 and M_2 , is $L(M_1) \subseteq L(M_2)$?

Given FAs M_1 and M_2 , is $L(M_1) \cap L(M_2)$ nonempty ?

Back to regular languages...

Let M be a PDA

Construct a PDA M^\prime such that $L(M^\prime)=L(M)$ and M^\prime has no Λ-transitions from an accepting state.

5 4

Given CFGs

 G_1 and G_2 , is $L(G_1) \subseteq L(G_2)$?

Given CFGs G_1 and G_2 , is $L(G_1) \cap L(G_2)$ nonempty ?

Undecidable!

21

22

Exercise.

Let M be a DPDA

Construct a DPDA M^\prime such that $L(M^\prime)=L(M)$ and M^\prime has no Λ-transitions from an accepting state.

Excercise 5.20.

Show that if L is accepted by a DPDA M, then there is a DPDA M' accepting the language $\{x\#y\mid x\in L \text{ and } xy\in L\}$. (The symbol # is assumed not to be in any of the strings of L.)

24

23