Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

college 5, 5 maart 2012

6. Context-Free and Non-Context-Free Languages

6.2. Intersections and Complements of CFLs

6.3. Decision Problems Involving Context-Free Languages

Huiswerkopgave 1, inleverdatum 6 maart 2012, 13:45 uur

Volgende week publicatie Huiswerkopgave 2

6.2. Intersections and Complements of CFLs

Closure properties:

	union	concat.	Kleene *	intersect.	complem.
Reg. languages	Х	Х	Х	Х	Х
CF languages	X	X	X		

Example 6.10. Two CFLs Whose Intersection Is Not a CFL

$$AnBnCn = \{a^{i}b^{i}c^{i} \mid i \ge 0\} \\ = \{a^{i}b^{i}c^{k} \mid i, k \ge 0\} \cap \{a^{i}b^{j}c^{j} \mid i, j \ge 0\}$$

Example 6.11. A CFL Whose Complement Is Not a CFL

$$L = XX' = \{a, b\}^* - XX$$

(hence $L' = XX = \{xx \mid x \in \{a, b\}^*\}$)

$$L = \{ y \in \{a, b\}^* \mid |y| \text{ is odd} \}$$
$$\cup \{ x_1 x_2 \in \{a, b\}^* \mid |x_1| = |x_2| \text{ and } \ge 1 \text{ mismatch} \}$$

Example 6.12. Another Example with Intersections and Complements

Let

$$L_1 = \{a^i b^j c^k \mid 0 \le i \le j\}$$
$$L_2 = \{a^i b^j c^k \mid 0 \le j \le k\}$$
$$L_3 = \{a^i b^j c^k \mid 0 \le k \le i\}$$

Then

$$AnBnCn = L_1 \cap L_2 \cap L_3$$

Example 6.12. Another Example ... (continued)

Let

$$L_1 = \{a^i b^j c^k \mid i \leq j\}$$

$$L_2 = \{a^i b^j c^k \mid j \leq k\}$$

$$L_3 = \{a^i b^j c^k \mid k \leq i\}$$

$$R = \{a\}^* \{b\}^* \{c\}^*$$

Then

$$L'_{1} = R' \cup \{a^{i}b^{j}c^{k} \mid i > j\}$$

$$L'_{2} = R' \cup \{a^{i}b^{j}c^{k} \mid j > k\}$$

$$L'_{3} = R' \cup \{a^{i}b^{j}c^{k} \mid k > i\}$$

$$AnBnCn = (L'_1 \cup L'_2 \cup L'_3)' = L_1 \cap L_2 \cap L_3$$

Theorem 2.15

Suppose $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ and $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$ are finite automata accepting L_1 and L_2 , respectively. Let M be the FA $(Q, \Sigma, q_0, A, \delta)$, where

 $Q = Q_1 \times Q_2$

 $q_0 = (q_1, q_2)$

and the transition function δ is defined by the formula

 $\delta((p,q),\sigma) = (\delta_1(p,\sigma), \delta_2(q,\sigma))$ for every $p \in Q_1$, every $q \in Q_2$, and every $\sigma \in \Sigma$.

Then

1. If
$$A = \{(p,q) | p \in A_1 \text{ or } q \in A_2\}$$
,
 M accepts the language $L_1 \cup L_2$.
2. If $A = \{(p,q) | p \in A_1 \text{ and } q \in A_2\}$,
 M accepts the language $L_1 \cap L_2$.
3. If $A = \{(p,q) | p \in A_1 \text{ and } q \notin A_2\}$,
 M accepts the language $L_1 - L_2$.

If L_1 is a context-free language and L_2 is a regular language, then $L_1 \cap L_2$ is a CFL.

Sketch of Proof...

Let $M_1 = (Q_1, \Sigma, \Gamma, q_1, Z_0, A_1, \delta_1)$ be a PDA accepting L_1 . Let $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$ be an FA accepting L_2 .

Then PDA $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ with

 $Q = Q_1 \times Q_2 \quad q_0 = (q_1, q_2) \quad A = A_1 \times A_2$ And $\delta \ldots$?

Sketch of Proof... (continued)

1. For every $(p,q) \in Q_1 \times Q_2$, $\sigma \in \Sigma$ and $Z \in \Gamma$, $\delta((p,q),\sigma,Z) = \{((p',q'),\alpha) \mid (p',\alpha) \in \delta_1(p,\sigma,Z) \text{ and } q' = \delta_2(q,\sigma)\}$

Sketch of Proof... (continued)

1. For every $(p,q) \in Q_1 \times Q_2$, $\sigma \in \Sigma$ and $Z \in \Gamma$, $\delta((p,q), \sigma, Z) = \{((p',q'), \alpha) \mid$

$$(p', \alpha) \in \delta_1(p, \sigma, Z)$$
 and $q' = \delta_2(q, \sigma)$

2. For every $(p,q) \in Q_1 \times Q_2$ and $Z \in \Gamma$,

$$\delta((p,q),\Lambda,Z) = \{((p',q),\alpha) \mid (p',\alpha) \in \delta_1(p,\Lambda,Z)\}$$

Sketch of Proof... (continued)

Now,

1.
$$(q_1, yz, Z_1) \vdash_{M_1}^n (p, z, \alpha) \text{ and } \delta^*(q_2, y) = q$$

if and only if

2.
$$((q_1, q_2), yz, Z_1) \vdash^n_M ((p, q), z, \alpha)$$

The details of the (inductive) proof of this statement do not have to be known for the exam.

6.3. Decision Problems Involving Context-Free Languages

Example 2.34. Decision Problems Involving Languages Accepted by Finite Automata

1. Membership problem:

Given an FA M and a string x over the alphabet of M, is $x \in L(M)$?

 Membership problem for context-free languages: Given a context-free grammar G and a string x, is x ∈ L(G) ?

Example 2.34. Decision Problems Involving Languages Accepted by Finite Automata

- **2.** Given an FA M, is L(M) nonempty ?
- **3.** Given an FA M, is L(M) infinite ?

- **2.** Given a context-free language *L*, is *L* nonempty ?
- **3.** Given a context-free language *L*, is *L* infinite ?

Theorem 2.29. The Pumping Lemma for Regular Languages

Suppose *L* is a language over the alphabet Σ . If *L* is accepted by a finite automaton $M = (Q, \Sigma, q_0, A, \delta)$, and if *n* is the number of states of *M*,

then for every $x \in L$ satisfying $|x| \ge n$, there are three strings u, v, and w such that x = uvw and the following three conditions are true:

1. $|uv| \le n$.

- 2. |v| > 0 (i.e., $v \neq \Lambda$).
- 3. For every $i \ge 0$, the string $uv^i w$ also belongs to L.

Theorem 6.1. The Pumping Lemma for Context-Free Languages

Suppose L is a context-free language. Then there is an integer n so that for every $u \in L$ with $|u| \ge n$, u can be written as u = vwxyz, for some strings v, w, x, y and z satisfying

1. $|wy| \ge 0$ 2. $|wxy| \le n$ 3. for every $m \ge 0$, $vw^m xy^m z \in L$

- **4.** Given FAs M_1 and M_2 , is $L(M_1) \cap L(M_2)$ nonempty ?
- **5.** Given FAs M_1 and M_2 , is $L(M_1) \subseteq L(M_2)$?

- **4.** Given CFGs G_1 and G_2 , is $L(G_1) \cap L(G_2)$ nonempty ?
- **5.** Given CFGs G_1 and G_2 , is $L(G_1) \subseteq L(G_2)$?

- **4.** Given FAs M_1 and M_2 , is $L(M_1) \cap L(M_2)$ nonempty ?
- **5.** Given FAs M_1 and M_2 , is $L(M_1) \subseteq L(M_2)$?

- **4.** Given CFGs G_1 and G_2 , is $L(G_1) \cap L(G_2)$ nonempty ?
- **5.** Given CFGs G_1 and G_2 , is $L(G_1) \subseteq L(G_2)$?

Undecidable !

Exercise.

Let M be a PDA.

Construct a PDA M' such that L(M') = L(M)and M' has no Λ -transitions from an accepting state.

Exercise.

Let M be a DPDA.

Construct a DPDA M' such that L(M') = L(M)and M' has no Λ -transitions from an accepting state.

Excercise 5.20.

Show that if L is accepted by a DPDA M, then there is a DPDA M' accepting the language $\{x \# y \mid x \in L \text{ and } xy \in L\}$. (The symbol # is assumed not to be in any of the strings of L.)