Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

college 4, 27 februari 2012

5. Pushdown Automata

5.5. Parsing

N

5.4. A CFG from a Given PDA

5.3. A PDA from a Given CFG

Definition 5.17. The Nondeterministic Top-Down PDA NT(G)

Let $G=(V,\Sigma,S,P)$ be a context-free grammar. The nondeterministic top-down PDA corresponding to G is $N\mathcal{T}(G)=(Q,\Sigma,\Gamma,q_0,Z_0,A,\delta)$, defined as follows:

$$Q = \{q_0, q_1, q_2\} \quad A = \{q_2\} \quad \Gamma = V \cup \Sigma \cup \{Z_0\}$$

The initial move of $N\mathcal{T}(G)$ is the Λ -transition

$$\delta(q_0, \Lambda, Z_0) = \{(q_1, SZ_0)\}\$$

and the only move to the accepting state is the A-transition

$$\delta(q_1, \Lambda, Z_0) = \{(q_2, Z_0)\}\$$

The moves from q_1 are the following: For every $A \in V$, $\delta(q_1, \wedge, A) = \{(q_1, \alpha) \mid A \to \alpha \text{ is a production in } G\}$ For every $\sigma \in \Sigma$, $\delta(q_1, \sigma, \sigma) = \{(q_1, \lambda)\}$

4

5.4. A CFG from a Given PDA

$$\begin{array}{c} a, +a \\ b, +b \\ \hline \\ q_0 \\ \end{array} \qquad \begin{array}{c} a, a/\Lambda \\ b, b/\Lambda \\ \hline \\ q_1 \\ \hline \\ \Lambda, Z_0/Z_0 \\ \hline \\ \end{array} \qquad \begin{array}{c} a, a/\Lambda \\ \\ \hline \\ q_1 \\ \hline \end{array}$$

Theorem 5.28.

If $M=(Q,\Sigma,\Gamma,g_0,Z_0,A,\delta)$ is a PDA, then there is another PDA M_1 such that $L_c(M_1)=L(M).$

Sketch of Proof.

Example 5.30. A CFG from a PDA Accepting *SimplePal* by empty stack

$$\begin{array}{c} b, +A \\ b, +B \\ \end{array}$$

Exercise 5.35

Let M be the PDA from Example 5.30 accepting SimplePal by empty stack.

Consider the simplistic preliminary approach to obtaining a CFG described in the discussion preceding Theorem 5.29. The states of M are ignored, the variables of the grammar are the stack symbols of M, and for every move that reads σ and replaces A on the stack by $BC \dots D$, we introduce a production $A \to \sigma BC \dots D$.

Show that although the string aa is not accepted by generated by the resulting CFG. M, it <u>s</u>.

9

10

Theorem 5.29

If $M=(Q,\Sigma,\Gamma,q_0,Z_0,A,\delta)$ is a pushdown automaton accepting L by empty stack, then there is a context-free grammar G such that L=L(G).

We define $G=(V,\Sigma,S,P)$ as follows: V contains S as well as all possible variables of the form where $A\in\Gamma$ and $p,q\in Q$. [p, A, q],

11

is in P.

 $[q, A, q_{m+1}] \rightarrow \sigma[q_1, B_1, q_2][q_2, B_2, q_3] \dots [q_m, B_m, q_{m+1}]$

Proof of Theorem 5.29. (continued)

The details of the rest of the proof do not have to be known for

Definition 5.17. The Nondeterministic Top-Down PDA NT(G)

Let $G=(V,\Sigma,S,P)$ be a context-free grammar. The nondeterministic top-down PDA corresponding to G is $NT(G) = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$, defined as follows:

$$Q = \{q_0, q_1, q_2\} \quad A = \{q_2\} \quad \Gamma = V \cup \Sigma \cup \{Z_0\}$$

The initial move of NT(G) is the Λ -transition

$$\delta(q_0, \Lambda, Z_0) = \{(q_1, SZ_0)\}\$$

and the only move to the accepting state is the A-transition

$$\delta(q_1, \Lambda, Z_0) = \{(q_2, Z_0)\}\$$

The moves from q_1 are the following: For every $A\in V$, $\delta(q_1, \wedge, A)=\{(q_1, \alpha)\mid A\to \alpha \text{ is a production in }G\}$ For every $\sigma\in \Sigma$, $\delta(q_1, \sigma, \sigma)=\{(q_1, \Lambda)\}$

Theorem 5.29

If $M=(Q,\Sigma,\Gamma,q_0,Z_0,A,\delta)$ is a pushdown automaton accepting L by empty stack, then there is a context-free grammar G such that L=L(G).

Proof.

Proof of Theorem 5.29. (continued)

 ${\it P}$ contains the following productions:

- 1. For every $q \in Q$, the production $S \to [q_0, Z_0, q]$ is in P.
- 2 For every $q,q_1\in Q$, every $\sigma\in\Sigma\cup\{\Lambda\}$, and every $A\in\Gamma$, if $\delta(q,\sigma,A)$ contains (q_1,Λ) , then the production $[q,A,q_1]\to\sigma$ is in P.
- ω For every $q,q_1\in Q$, every $\sigma\in\Sigma\cup\{\Lambda\}$, every $A\in\Gamma$, and every $m\geq 1$, if $\delta(q,\sigma,A)$ contains $(q_1,B_1B_2\dots B_m)$ for some B_1,B_2,\dots,B_m in Γ , then for every choice of q_2,q_3,\dots,q_{m+1} in Q, the production

12

ഗ <u>.</u> Parsing

Example 5.32. A Top-Down Parser for Balanced

CFG 1:

$$S \to [S] \mid SS \mid \mathsf{A}$$

$$LA_1\ (S\rightarrow [S])\ =\ \{\ [\ \}$$

$$LA_1\ (S\to SS)\ =\ \{\ [,\],_\}$$

$$LA_1\ (S\to\Lambda) \quad =\ \{\ [,\],_\}$$

Example 5.32. A Top-Down Parser for Balanced (continued)

Example 5.32. A Top-Down Parser for Balanced (continued)

CFG 3:

CFG 2:

$$S \to [S]S \mid \Lambda$$

$$S \to S_1 \$$$
 $S_1 \to [S_1]S_1 \mid \land$

$$LA_1 (S \to [S]S) = \{ [\} \}$$

 $LA_1 (S \to \Lambda) = \{ \}, -\}$

$$LA_1 (S_1 \to [S_1]S_1) = \{ [\}$$

 $LA_1 (S_1 \to \Lambda) = \{], \$ \}$

17

18