Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

5. Pushdown Automata

5.2. Deterministic Pushdown Automata

5.3. A PDA from a Given CFG

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl (werk-)college 2b, 14 februari 2012

There exist different strings $r,s\in\{a,b\}^*,$ such that for every $z\in\{a,b\}^*,$ M treats rz and sz the same way.

For a string $x \in \{a,b\}^*$, let y_x be a string such height of stack after xy_x is minimal.

Infinitely many strings xy_x . Let α_x be stack after xy_x . (state, top stack symbol) determines how suffix z is treated.

Finitely many pairs (q,X)

Different $r = uy_u$ and $s = vy_v$ arrive at same pair (q, X).

For any suffix z, rz and sz are treated the same: $rz \in Pal \iff sz \in Pal.$

ω

Theorem 5.16.

The language *Pal* cannot be accepted by a deterministic pushdown automaton.

Sketch of Proof.

Assume M is DPDA for Pal

Let moves of
$$M$$
 be of forms $\delta(p,\sigma,X)=\{(q,\Lambda)\}$ or $\delta(p,\sigma,X)=\{(q,\alpha X)\}$

M reads every string $x \in \{a,b\}^*$ completely, with one path.

There exist different strings $r,s\in\{a,b\}^*,$ such that for every $z\in\{a,b\}^*,$ M treats rz and sz the same way.

Example 5.7. A Pushdown Automaton Accepting Pal

Exercise 5.18.

For each of the following languages, give a transition diagram for a deterministic PDA that accepts that language.

a.
$$\{x \in \{a,b\}^* \mid n_a(x) < n_b(x)\}$$

b.
$$\{x \in \{a,b\}^* \mid n_a(x) \neq n_b(x)\}$$

 $AEqB = \{x \in \{a,b\}^* \mid n_a(x) = n_b(x)\}$

Example 5.13. Two DPDAs accepting AEqB

Homework:

c.
$$\{x \in \{a,b\}^* \mid n_a(x) = 2n_b(x)\}$$

d.
$$\{a^nb^{n+m}a^m \mid n, m \ge 0\}$$

5.3. A PDA from a Given CFG

Example 5.19. The Language Balanced

$$S \to [S] \mid SS \mid \Lambda$$

A derivation of [[][]]...

Definition 5.17. The Nondeterministic Top-Down PDA NT(G)

Let $G=(V,\Sigma,S,P)$ be a context-free grammar. The nondeterministic top-down PDA corresponding to G is $NT(G)=(Q,\Sigma,\Gamma,g_0,Z_0,A,\delta)$, defined as follows:

$$Q = \{q_0, q_1, q_2\} \quad A = \{q_2\} \quad \Gamma = V \cup \Sigma \cup \{Z_0\}$$

The initial move of $\mathcal{NT}(G)$ is the Λ -transition

$$\delta(q_0, \Lambda, Z_0) = \{(q_1, SZ_0)\}\$$

and the only move to the accepting state is the Λ -transition

$$\delta(q_1, \Lambda, Z_0) = \{(q_2, Z_0)\}\$$

The moves from q_1 are the following: For every $A \in V$, $\delta(q_1, \wedge, A) = \{(q_1, \alpha) \mid A \to \alpha \text{ is a production in } G\}$ For every $\sigma \in \Sigma$, $\delta(q_1, \sigma, \sigma) = \{(q_1, \lambda)\}$

Exercise 5.28.

- In each case below, you are given a CFG G and a string x that it generates.

 1. Draw the transition diagram of the top-down PDA NT(G).

 2a. For NT(G), trace a sequence of moves by which x is accepted, showing at each step the state, the unread input, and the stack contents.

 2b. Show at the same time the corresponding leftmost derivation of x in the grammar. See Example 5.19 for a guide.
- a. The grammar has productions

$$S \rightarrow S + T \mid T \quad T \rightarrow T * F \mid F \quad F \rightarrow [S] \mid a$$

and
$$x = [a + a * a] * a$$
.

10