Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

(werk-)college 2a, 13 februari 2012

Pushdown Automata

5.2 Deterministic Pushdown Automata

5.1. Definitions and Examples

Definition 5.1. A Pushdown Automaton

A pushdown automaton (PDA) is a 7-tuple $M=(Q,\Sigma,\Gamma,q_0,Z_0,A,\delta)$, where

Q is a finite set of states. Σ and Γ are finite sets, the *input* and stack alphabet. g_0 , the initial state, is an element of Q. Z_0 , the initial stack symbol, is an element of Γ . A, the set of accepting states, is a subset of Q. δ , the transition function, is a function from $Q \times (\Sigma \cup \{\Lambda\}) \times \Gamma$ to the set of finite subsets of $Q \times \Gamma^*$.

In principle, $\ensuremath{Z_0}$ may be removed from the stack but often it isn't.

ω

Example 5.3. A PDA Accepting the Language AnBn

$$AnBn = \{a^ib^i \mid i \ge 0\}$$

Example 5.7. A Pushdown Automaton Accepting Pal

Example 5.3. A PDA Accepting the Language AnBn

$$AnBn = \{a^i b^i \mid i \ge 0\}$$

$$\underbrace{\begin{array}{cccc}
a, a/aa & b, a/\wedge \\
q_1 & & \downarrow & \downarrow \\
q_2 & \wedge, Z_0/Z_0 \\
q_3 & & \downarrow & \downarrow \\
q_2 & & \wedge, Z_0/Z_0
\end{array}}_{q_2, a/A}$$

Ν

Definition 5.2. Acceptance by a PDA

the string \boldsymbol{x} is accepted by \boldsymbol{M} if If $M=(Q,\Sigma,\Gamma,q_0,Z_0,A,\delta)$ and $x\in\Sigma^*$

$$(q_0, x, Z_0) \vdash_M^* (q, \land, \alpha)$$

for some $\alpha \in \Gamma^*$ and some $q \in A$.

A language $L\subseteq \Sigma^*$ is said to be accepted by M, if L is precisely the set of strings accepted by M; in this case, we write L=L(M).

Sometimes a string accepted by M, or a language accepted by M, is said to be accepted by final state.

Exercise 5.8.

Give transition $\operatorname{\mbox{\bf diagrams}}$ for PDAs accepting each of the following languages.

a'.
$$\{a^ib^{2i} \mid i \geq 0\}$$

a.
$$\{a^ib^j \mid i \le j \le 2i\}$$

a".
$$\{a^ib^j \mid j \le i \le 2j\}$$

b.
$$\{x \in \{a,b\}^* \mid n_a(x) < n_b(x) < 2n_a(x)\}$$

 $(q_1, \Lambda, baabZ_0)$ $(q_0, \Lambda, \stackrel{\frown}{baab} Z_0)$ $(q_1, \wedge, aabZ_0)$ $(q_0, baab, Z_0)$ $aabZ_0$ abZ_0 $(q_1, b, aabZ_0)$ $(q_1, \stackrel{\frown}{aab}, Z_0)$ $(q_1, \overline{b}, abZ_0)$ (q_1, ab, bZ_0) (q_2, aab, Z_0) (q_1, aab, bZ_0) $(q_2, baab, Z_0)$ $(q_1, baab, Z_0)$ (q_1,b,bZ_0) (q_1, ab, abZ_0) $(q_2, \stackrel{.}{\mathsf{\Lambda}}, Z_0)$ $(q_1, \stackrel{\centerdot}{\Lambda}, Z_0)$

5.2.

Deterministic Pushdown Automata

9

Definition 5.10. A Deterministic Pushdown Automaton

A pushdown automaton $M=(Q,\Sigma,\Gamma,q_0,Z_0,A,\delta)$ is deterministic if it satisfies both of the following conditions.

- For every $q\in Q$, every $\sigma\in \Sigma\cup\{\Lambda\}$, and every $X\in \Gamma$, the set $\delta(q,\sigma,X)$ has at most one element.
- Ņ For every $q\in Q$, every $\sigma\in \Sigma$, and every $X\in \Gamma$, the two sets $\delta(q,\sigma,X)$ and $\delta(q,\Lambda,X)$ cannot both be nonempty.

≒ ⊳ language L is a deterministic context-free language (DCFL) there is a deterministic PDA (DPDA) accepting L.

(in other words): For every $q\in Q$ and every $X\in \Gamma$, if $\delta(q,\Lambda,X)$ is not empty, then $\delta(q,\sigma,X)$ is empty for every $\sigma\in \Sigma$.

10

Example 5.11. A DPDA Accepting Balanced

Balanced = {balanced strings of brackets [and]}

11

12

by a deterministic pushdown automaton. The language Pal cannot be accepted

Theorem 5.16.

Sketch of Proof.

Exercise 5.16.

Show that if L is accepted by a PDA, then L is accepted by a PDA that never crashes (i.e., for which the stack never empties and no configuration is reached from which there is no move

Exercise 5.17.

Show that if L is accepted by a PDA, then L is accepted by a

- PDA in which every move
 either pops something from the stack (i.e., removes a stack symbol without putting anything else on the stack);
 or pushes a single symbol onto the stack on top of the symbol that was previously on top;
- or leaves the stack unchanged.

14

Definition 2.20. Strings Distinguishable with Respect to L

If L is a language over the alphabet Σ , and x and y are strings in Σ^* , then x and y are distinguishable with respect to L, or L-distinguishable, if there is a string $z \in \Sigma^*$ such that either $xz \in L$ and $yz \notin L$, or $xz \notin L$ and $yz \in L$.

Theorem 5.16.

The language *Pal* cannot be accepted by a deterministic pushdown automaton.

Sketch of Proof.

Assume M is DPDA for Pal

Let moves of M be of forms $\delta(p,\sigma,X)=\{(q,\Lambda)\} \text{ or } \delta(p,\sigma,X)=\{(q,\alpha X)\}$

M reads every string $x \in \{a,b\}^*$ completely, with one path.

There exist different strings $r,s\in\{a,b\}^*$, such that for every $z\in\{a,b\}^*$, M treats rz and sz the same way.

Example 2.27. For Every Pair x,y of Distinct Strings in $\{a,b\}^*$, x and y Are Distinghuishable with Respect to Pal.

There exist different strings $r,s\in\{a,b\}^*$, such that for every $z\in\{a,b\}^*$, M treats rz and sz the same way.

For a string $x \in \{a,b\}^*$, let y_x be a string such height of stack after xy_x is minimal.

Let α_x be stack after $xy_x.$ (state, top stack symbol) determines how suffix z is treated.

Infinitely many strings xy_x .

Finitely many pairs (q,X)

Different $r = uy_u$ and $s = vy_v$ arrive at same pair (q, X).

For any suffix $z,\ rz$ and sz are treated the same: $rz \in \textit{Pal} \iff sz \in \textit{Pal}.$

17