Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

(werk-)college 2a, 13 februari 2012

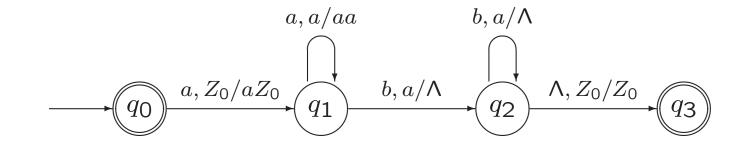
5. Pushdown Automata

5.1. Definitions and Examples

5.2. Deterministic Pushdown Automata

Example 5.3. A PDA Accepting the Language AnBn

$$AnBn = \{a^i b^i \mid i \ge 0\}$$



Definition 5.1. A Pushdown Automaton

A pushdown automaton (PDA) is a 7-tuple $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$, where

 \boldsymbol{Q} is a finite set of states.

 Σ and Γ are finite sets, the *input* and *stack* alphabet.

 q_0 , the initial state, is an element of Q.

 Z_0 , the initial stack symbol, is an element of Γ .

A, the set of accepting states, is a subset of Q.

 δ , the transition function, is a function from $Q \times (\Sigma \cup \{\Lambda\}) \times \Gamma$

to the set of finite subsets of $Q \times \Gamma^*$.

In principle, Z_0 may be removed from the stack, but often it isn't.

Definition 5.2. Acceptance by a PDA

If $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ and $x \in \Sigma^*$, the string x is accepted by M if

$$(q_0, x, Z_0) \vdash^*_M (q, \Lambda, \alpha)$$

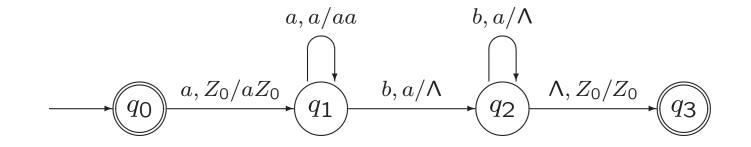
for some $\alpha \in \Gamma^*$ and some $q \in A$.

A language $L \subseteq \Sigma^*$ is said to be accepted by M, if L is precisely the set of strings accepted by M; in this case, we write L = L(M).

Sometimes a string accepted by M, or a language accepted by M, is said to be accepted by final state.

Example 5.3. A PDA Accepting the Language AnBn

$$AnBn = \{a^i b^i \mid i \ge 0\}$$



Exercise 5.8.

Give transition diagrams for PDAs accepting each of the following languages.

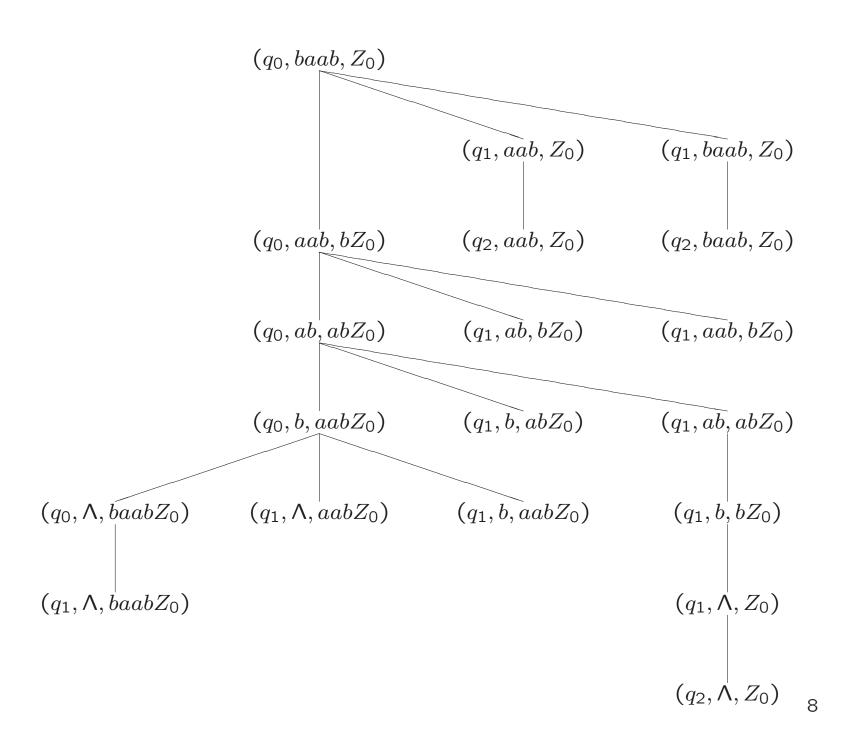
a'.
$$\{a^i b^{2i} \mid i \ge 0\}$$

- **a.** $\{a^i b^j \mid i \le j \le 2i\}$
- a". $\{a^i b^j \mid j \leq i \leq 2j\}$

Homework:

b.
$$\{x \in \{a, b\}^* \mid n_a(x) < n_b(x) < 2n_a(x)\}$$

Example 5.7. A Pushdown Automaton Accepting Pal



5.2. Deterministic Pushdown Automata

Definition 5.10. A Deterministic Pushdown Automaton

A pushdown automaton $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ is *deterministic* if it satisfies both of the following conditions.

- 1. For every $q \in Q$, every $\sigma \in \Sigma \cup \{\Lambda\}$, and every $X \in \Gamma$, the set $\delta(q, \sigma, X)$ has at most one element.
- 2. For every $q \in Q$, every $\sigma \in \Sigma$, and every $X \in \Gamma$, the two sets $\delta(q, \sigma, X)$ and $\delta(q, \Lambda, X)$ cannot both be nonempty.

A language L is a deterministic context-free language (DCFL) if there is a deterministic PDA (DPDA) accepting L.

2. (in other words): For every $q \in Q$ and every $X \in \Gamma$, if $\delta(q, \Lambda, X)$ is not empty, then $\delta(q, \sigma, X)$ is empty for every $\sigma \in \Sigma$. Example 5.11. A DPDA Accepting Balanced

Balanced = {balanced strings of brackets [and]}

Theorem 5.16.

The language *Pal* cannot be accepted by a deterministic pushdown automaton.

Sketch of Proof.

Exercise 5.16.

Show that if L is accepted by a PDA, then L is accepted by a PDA that never crashes (i.e., for which the stack never empties and no configuration is reached from which there is no move defined).

Exercise 5.17.

Show that if L is accepted by a PDA, then L is accepted by a PDA in which every move

- either pops something from the stack (i.e., removes a stack symbol without putting anything else on the stack);
- or pushes a single symbol onto the stack on top of the symbol that was previously on top;
- or leaves the stack unchanged.

Definition 2.20. Strings Distinguishable with Respect to L

If L is a language over the alphabet Σ , and x and y are strings in Σ^* , then x and y are *distinguishable with respect to* L, or L*distinguishable*, if there is a string $z \in \Sigma^*$ such that either $xz \in L$ and $yz \notin L$, or $xz \notin L$ and $yz \in L$.

Example 2.27. For Every Pair x, y of Distinct Strings in $\{a, b\}^*$, x and y Are Distinghuishable with Respect to *Pal*.

Theorem 5.16.

The language *Pal* cannot be accepted by a deterministic pushdown automaton.

Sketch of Proof.

Assume M is DPDA for *Pal*.

Let moves of *M* be of forms $\delta(p, \sigma, X) = \{(q, \Lambda)\}$ or $\delta(p, \sigma, X) = \{(q, \alpha X)\}$

M reads every string $x \in \{a, b\}^*$ completely, with one path.

There exist different strings $r, s \in \{a, b\}^*$, such that for every $z \in \{a, b\}^*$, M treats rz and sz the same way.

There exist different strings $r, s \in \{a, b\}^*$, such that for every $z \in \{a, b\}^*$, M treats rz and sz the same way.

For a string $x \in \{a, b\}^*$, let y_x be a string such height of stack after xy_x is minimal.

Let α_x be stack after xy_x .

(state, top stack symbol) determines how suffix z is treated.

Infinitely many strings xy_x .

Finitely many pairs (q, X)

Different $r = uy_u$ and $s = vy_v$ arrive at same pair (q, X).

For any suffix z, rz and sz are treated the same: $rz \in Pal \iff sz \in Pal$.