Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071 rvvliet(at)liacs.nl 071-527 5777

college 1, 6 februari 2012

Herhaling onderwerpen FI2

5. Pushdown Automata

5.1. Definitions and Examples

hoorcollege: maandag 6 feb - 14 mei, zaal 403, 13:45-15:30 werkcollege: dinsdag 7 feb - 15 mei, zaal 403, 13:45-15:30 (Wouter Duivesteijn)

• boek: John C. Martin, Introduction to Languages and the Theory of Computation, 4th edition Er komt verwijslijst naar 3rd edition

• tentamens: maandag 11 juni 2012, 10:00–13:00 maandag 20 augustus 2012, 10:00–13:00

• Drie huiswerkopgaven (individueel) Niet verplicht, maar ...

6 EC

Ν

eindcijfer = 0.9 imes tentamencijfer + cijferhuiswerkopgaven

Fundamentele Informatica N

- 2.1. Finite Automata
- 2.4. The Pumping Lemma
- 3.1. Regular Languages and Regular Expressions
- 3.2. Nondeterministic Finite Automata
- 3.3. The Nondeterminism in an NFA Can Be Eliminated
- 3.4/3.5. Kleene's Theorem

ω

Fundamentele Informatica 2

- 4.2. Context-Free Grammars
- 4.3. Regular Languages and Regular Grammars
- 4.4. Derivation Trees
- The Pumping Lemma for Context-Free Languages

just like FA, PDA accepts strings / language

just like FA, PDA has states

just like FA, PDA reads input one letter at a time

 \mathcal{G}

Pushdown Automata

unlike FA, PDA has auxiliary memory: a stack

unlike FA, by default PDA is nondeterministic

unlike FA, by default Λ -transitions are allowed in PDA

Stack in PDA contains symbols from certain alphabet.

Usual stack operations: pop, top, push

Extra possiblity: replace top element X by string α

 $\begin{array}{ccc}
\alpha & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$ top push push*

Top element X is required to do a move!

Example 5.3. A PDA Accepting the Language AnBn

 $AnBn = \{a^ib^i \mid i \ge 0\}$

Definition 5.1. A Pushdown Automaton

A pushdown automaton (PDA) is a 7-tuple $M=(Q,\Sigma,\Gamma,q_0,Z_0,A,\delta),$ where

Q is a finite set of states. Σ and Γ are finite sets, the *input* and stack alphabet. g_0 , the initial state, is an element of Q. Z_0 , the initial stack symbol, is an element of Γ . A, the set of accepting states, is a subset of Q. δ , the transition function, is a function from ...to ...

9

Example 5.3. A PDA Accepting the Language AnBn

$$AnBn = \{a^ib^i \mid i \ge 0\}$$

Transition Table vs Transition Diagram

						_
	б	4	ω	2	1	Move Number State Input
all other combinations	92	q_2	q_1	q_1	q_0	State
	>	b	b	a	a	
	Z_0	a	a	a	Z_0	Stack Symbol Move(s)
none	(q_3, Z_0)	(q_2, Λ)	(q_2, Λ)	(q_1,aa)	(q_1, aZ_0)	Move(s)

11

Definition 5.2. Acceptance by a PDA

If $M=(Q,\Sigma,\Gamma,q_0,Z_0,A,\delta)$ and $x\in\Sigma^*$ the string x is accepted by M if

for some $\alpha \in \Gamma^*$ and some $q \in A$.

 $(q_0, x, Z_0) \vdash_M^* (q, \Lambda, \alpha)$

A language $L\subseteq \Sigma^*$ is said to be accepted by M, if L is precisely the set of strings accepted by M; in this case, we write L=L(M).

Sometimes a string accepted by M, or a language accepted by M, is said to be accepted by final state.

Example 5.7. A Pushdown Automaton Accepting Pal

Definition 5.1. A Pushdown Automaton

A pushdown automaton (PDA) is a 7-tuple $M=(Q,\Sigma,\Gamma,q_0,Z_0,A,\delta)$, where

Q is a finite set of states. Σ and Γ are finite sets, the *input* and *stack* alphabet. g_0 , the initial state, is an element of Q. Z_0 , the initial stack symbol, is an element of Γ . A, the set of accepting states, is a subset of Q. δ , the transition function, is a function from $Q \times (\Sigma \cup \{\Lambda\}) \times \Gamma$

to the set of finite subsets of $Q \times \Gamma^*$

In principle, Z_0 may be removed from the stack but often it isn't.

10

Notation:

configuration (q, x, α)

$$(p, x, \alpha) \vdash_M (q, y, \beta)$$

$$(p, x, \alpha) \vdash_{M}^{n} (q, y, \beta)$$
 $(p, x, \alpha) \vdash_{M}^{*} (q, y, \beta)$

$$(p,x,\alpha) \vdash (q,y,\beta) \qquad (p,x,\alpha) \vdash^n (q,y,\beta) \qquad (p,x,\alpha) \vdash^* (q,y,\beta)$$

12

AnBn and SimplePal Example 5.3. PDAs Accepting the Languages

$$AnBn = \{a^i b^i \mid i \ge 0\}$$

$$SimplePal = \{xcx^r \mid x \in \{a, b\}^*\}$$

14

 $(q_1, \Lambda, baabZ_0)$ $(q_0, \Lambda, \stackrel{\frown}{baab}Z_0)$ $(q_1, \Lambda, aabZ_0)$ $(q_0,$ $(q_0, baab, Z_0)$ $aabZ_0$ abZ_0) $(q_1, b, aabZ_0)$ $(q_1, \stackrel{\frown}{aab}, Z_0)$ (q_1, b, abZ_0) (q_1, ab, bZ_0) (q_2, aab, Z_0) (q_1, aab, bZ_0) $(q_2, baab, Z_0)$ $(q_1, baab, Z_0)$ (q_1, ab, abZ_0) $(q_2, \stackrel{.}{\mathsf{\Lambda}}, Z_0)$ (q_1, b, bZ_0) (q1, ^ (Z_0) 16

5.2. Deterministic Pushdown Automata

Definition 5.10. A Deterministic Pushdown Automaton

A pushdown automaton $M=(Q,\Sigma,\Gamma,q_0,Z_0,A,\delta)$ is deterministic if it satisfies both of the following conditions.

- 1. For every $q\in Q$, every $\sigma\in\Sigma\cup\{\Lambda\}$, and every $X\in\Gamma$, the set $\delta(q,\sigma,X)$ has at most one element.
- 2. For every $q\in Q$, every $\sigma\in \Sigma$, and every $X\in \Gamma$, the two sets $\delta(q,\sigma,X)$ and $\delta(q,\Lambda,X)$ cannot both be nonempty.

A language L is a deterministic context-free language (DCFL) if there is a deterministic PDA (DPDA) accepting L.

2. (in other words): For every $q\in Q$ and every $X\in \Gamma$, if $\delta(q,\Lambda,X)$ is not empty, then $\delta(q,\sigma,X)$ is empty for every $\sigma\in \Sigma$.

17

18