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9. Undecidable Problems
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Definition 9.6. Reducing One Decision Problem to Another,

and Reducing One Language to Another

Suppose P1 and P2 are decision problems. We say P1 is reducible

to P2 (P1 ≤ P2)

• if there is an algorithm

• that finds, for an arbitrary instance I of P1, an instance F (I)

of P2,

• such that for every I the answers for the two instances are

the same, or I is a yes-instance of P1 if and only if F (I) is a

yes-instance of P2.

(similar for languages)
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Theorem 9.7.

(statement about languages)

Suppose P1 and P2 are decision problems, and P1 ≤ P2.

If P2 is decidable, then P1 is decidable.
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Two more decision problems:

Accepts: Given a TM T and a string x, is x ∈ L(T ) ?

Halts: Given a TM T and a string x, does T halt on input x ?

Theorem 9.8 Both Accepts and Halts are undecidable.
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Theorem 9.12. Rice’s Theorem

If R is a nontrivial language property of TMs, then the decision

problem

PR: Given a TM T , does T have property R ?

is undecidable.

Proof. . .

5



Examples of decision problems to which Rice’s theorem can be

applied:

. . .

2. AcceptsSomething:

Given a TM T , is there at least one string in L(T ) ?

. . .

All these problems are undecidable.
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9.4. Post’s Correspondence Problem
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Definition 9.14. Post’s Correspondence Problem

An instance of Post’s correspondence problem (PCP) is a set

{(α1, β1), (α2, β2), . . . , (αn, βn)}

of pairs, where n ≥ 1 and the αi’s and βi’s are all nonnull strings

over an alphabet Σ.

The decision problem is this:

Given an instance of this type, do there exist a positive integer

k and a sequence of integers i1, i2, . . . , ik, with each ij satisfying

1 ≤ ij ≤ n, satisfying

αi1αi2 . . . αik
= βi1βi2 . . . βik ?

i1, i2, . . . , ik need not all be distinct.
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Definition 9.14. Post’s Correspondence Problem (continued)

An instance of the modified Post’s correspondence problem (MPCP)

looks exactly like an instance of PCP, but now the sequence of

integers is required to start with 1. The question can be formu-

lated this way:

Do there exist a positive integer k and a sequence i2, i3, . . . , k

such that

α1αi2 . . . αik
= β1βi2 . . . βik ?

(Modified) correspondence system, match.
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Theorem 9.15. MPCP ≤ PCP

Proof.

For instance

I = {(α1, β1), (α2, β2), . . . , (αn, βn)}

of MPCP, construct instance J = F (I) of PCP, such that I is

yes-instance, if and only if J is yes-instance.
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For 1 ≤ i ≤ n, if

(αi, βi) = (a1a2 . . . ar, b1b2 . . . bs)

we let

(α′
i, β

′
i) = (a1#a2# . . . ar#, #b1#b2 . . .#bs)

12



For 1 ≤ i ≤ n, if

(αi, βi) = (a1a2 . . . ar, b1b2 . . . bs)

we let

(α′
i, β

′
i) = (a1#a2# . . . ar#, #b1#b2 . . .#bs)

If

(α1, β1) = (a1a2 . . . ar, b1b2 . . . bs)

add

(α′′
1, β

′′
1) = (#a1#a2# . . . ar#, #b1#b2 . . .#bs)

Finally, add

(α′
n+1, β

′
n+1) = ($,#$)
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Theorem 9.16. Accepts ≤ MPCP

The technical details of the proof of this result do not have to

be known for the exam. However, one must be able to carry out

the construction below.

Proof. . .

For every instance (T,w) of Accepts, construct instance F (T,w)

of MPCP, such that . . .
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Notation:

description of tape contents: xσy or xy

configuration xqy = xqy∆ = xqy∆∆

initial configuration corresponding to input x: q0∆x

In the third edition of the book, a configuration is denoted as

(q, xy) or (q, xσy) instead of xqy or xqσy.

This old notation is also allowed for Fundamentele Informatica 3.
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Proof of Theorem 9.16. (continued)

Take

(α1, β1) = (#,#q0∆w#)

Pairs of type 1: (a, a) for every a ∈ Γ ∪ {∆}, and (#,#)

Pairs of type 2: corresponding to moves in T , e.g.,

(qa, bp), if δ(q, a) = (p, b, R)

(cqa, pcb), if δ(q, a) = (p, b, L)

(q#, pa#), if δ(q,∆) = (p, b, S)

Pairs of type 3: for every a, b ∈ Γ ∪ {∆}, the pairs

(haa, ha), (aha, ha), (ahab, ha)

One pair of type 4:

(ha##,#)
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Proof of Theorem 9.16. (continued)

Two assumptions in book:

1. T never moves to hr

2. w 6= Λ (i.e., special initial pair if w = Λ)

These assumptions are not necessary. . .
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Theorem 9.17.

Post’s correspondence problem is undecidable.
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Example 9.18. A Modified Correspondence System for a TM

T accepts all strings in {a, b}∗ ending with b.
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Example 9.18. A Modified Correspondence System for a TM

(continued)

(q0∆,∆q1) (q0#,∆q1#) (q1a, aq1) (q1b, bq1)
(aq1∆, q2a∆) (bq1∆, q2b∆) . . .
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9.5. Undecidable Problems
Involving Context-Free Languages
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For an instance

{(α1, β1), (α2, β2), . . . , (αn, βn)}

of PCP, let. . .

CFG Gα be defined by productions

Sα → αiSαci | αici (1 ≤ i ≤ n)

CFG Gβ be defined by productions

Sβ → βiSβci | βici (1 ≤ i ≤ n)
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Theorem 9.20.

These two problems are undecidable:

1. CFGNonEmptyIntersection:

Given two CFGs G1 and G2, is L(G1) ∩ L(G2) nonempty?

2. IsAmbiguous:

Given a CFG G, is G ambiguous?

Proof. . .
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Let T be TM, let x be string accepted by T , and let

z0 ⊢ z1 ⊢ z2 ⊢ z3 . . . ⊢ zn

be ‘succesful computation’ of T for x,

i.e., z0 = q0∆x

and zn is accepting configuration.
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Let T be TM, let x be string accepted by T , and let

z0 ⊢ z1 ⊢ z2 ⊢ z3 . . . ⊢ zn

be ‘succesful computation’ of T for x,

i.e., z0 = q0∆x

and zn is accepting configuration.

Successive configurations zi and zi+1 are almost identical;

hence zi#zi+1 cannot be described by CFG,

cf. XX = {xx | x ∈ {a, b}∗}.

zi#zri+1 is almost a palindrome, and can be described by CFG.
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Definition 9.21. Valid Computations of a TM

Let T = (Q,Σ,Γ, q0, δ) be a Turing machine.

A valid computation of T is a string of the form

z0#zr1#z2#zr3 . . .#zn#

if n is even, or

z0#zr1#z2#zr3 . . .#zrn#

if n is odd,

where in either case, # is a symbol not in Γ,

and the strings zi represent successive configurations of T on

soms input string x, starting with the initial configuration z0 and

ending with an accepting configuration.

The set of valid computations of T will be denoted by CT .
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Part of Theorem 9.22. For a TM T , the complement C′
T of

CT is a context-free language.

In fact C′
T can be described as the union of seven context-free

languages, for each of which we can algorithmically construct a

CFG.

The proof of this result does not have to be known for the exam.
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Theorem 9.23. The decision problem

CFGGeneratesAll: Given a CFG G with terminal alphabet

Σ, is L(G) = Σ∗ ?

is undecidable.

Proof.

Let

AcceptsNothing: Given a TM T , is L(T ) = ∅ ?

Prove that AcceptsNothing ≤ CFGGeneratesAll . . .
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Undecidable Decision Problems (we have discussed)
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Tentamen: maandag 11 juni 2012, 10:00–13:00

Vragenuur. . . ?

Volgend jaar: hoofdstuk 7–10 ipv hoofdstuk 5–9.
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