Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

college 14, maandag 7 mei 2012

9. Undecidable Problems

9.3. More Decision Problems Involving Turing Machines

Decision problem: problem for which the answer is 'yes' or 'no':

Given ..., is it true that ...?

Self-Accepting: Given a TM T, does T accept the string $e(T)$?

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ , we say that P is *decidable* if $Y(P) = \{e(I) | I$ is a yes-instance of $P\}$ is a recursive language.

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another

Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 $(P_1 \leq P_2)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_1 , an instance $F(I)$ of P_2 ,

• such that for every I the answers for the two instances are the same, or I is a yes-instance of P_1 if and only if $F(I)$ is a yes-instance of P_2 .

(similar for languages)

Theorem 9.7.

(statement about languages)

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$. If P_2 is decidable, then P_1 is decidable.

Two more decision problems:

Accepts: Given a TM T and a string x, is $x \in L(T)$?

Halts: Given a TM T and a string x, does T halt on input x ?

Theorem 9.8 Both Accepts and Halts are undecidable.

9.3. More Decision Problems Involving Turing Machines Accepts: Given a TM T and a string x, is $x \in L(T)$? Instances are . . .

Halts: Given a TM T and a string x, does T halt on input x ? Instances are . . .

Self-Accepting: Given a TM T, does T accept the string $e(T)$? Instances are . . .

Now fix a TMT : T-Accepts: Given a string x, does T accept x ? Instances are . . . Exercise 11.7. Decidable or undecidable ?

1. Accepts-Λ: Given a TM T, is $\Lambda \in L(T)$?

Proof.

1. Prove that $Access \leq Access-\Lambda$...

Reduction from Accepts to Accepts-Λ.

Instance of Accepts is (T_1, x) for TM T_1 and string x. Instance of Accepts- Λ is TM T_2 .

 $T_2 = F(T_1, x) =$ $Write(x) \rightarrow T_1$

 T_2 accepts Λ , if and only if T_1 accepts x .

If we had an algorithm/TM A_2 to solve Accepts- Λ , then we would also have an algorithm/TM A_1 to solve Accepts, as follows:

```
A_1:
Given instance (T_1, x) of Accepts,
1. construct T_2 = F(T_1, x);
2. run A_2 on T_2.
```

```
A_1 answers 'yes' for (T_1, x),
if and only if A_2 answers 'yes' for T_2,
if and only T_2 accepts \Lambda,
if and only if T_1 accepts x.
```
2. AcceptsEverything: Given a TM T with input alphabet Σ , is $L(T) = \Sigma^*$?

Proof.

2. Prove that $Accepts-\Lambda \leq AcceptsEverything...$

3. Subset: Given two TMs T_1 and T_2 , is $L(T_1) \subseteq L(T_2)$?

Proof.

3. Prove that $AcceptsEverything \le Subset$...

4. Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Proof.

4. Prove that Subset \le Equivalent ...

5. WritesSymbol:

Given a TM T and a symbol a in the tape alphabet of T , does T ever write a if it starts with an empty tape?

Proof.

5. Prove that $Accepts-\Lambda \leq WritessSymbol...$

AtLeast10MovesOn-Λ: Given a TM T, does T make at least ten moves on input Λ ?

WritesNonblank: Given a TM T , does T ever write a nonblank symbol on input Λ ?

Theorem 9.10.

The decision problem WritesNonblank is decidable.

Proof. . .

Definition 9.11. A Language Property of TMs

A property R of Turing machines is called a *language property* if, for every Turing machine T having property R, and every other TM T_1 with $L(T_1) = L(T)$, T_1 also has property R.

A language property of TMs is nontrivial if there is at least one TM that has the property and at least one that doesn't.

In fact, a language property is a property of the languages accepted by TMs.

Exercise 9.23. Show that the property "accepts its own encoding" is not ^a language property of TMs.

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p,\sigma) = (q,\tau,D)$

$$
e(m) = 1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0
$$

We list the moves of T in some order as m_1, m_2, \ldots, m_k , and we define

$$
e(T) = e(m_1)0e(m_2)0\ldots 0e(m_k)0
$$

Theorem 9.12. Rice's Theorem If R is a nontrivial language property of TMs, then the decision problem

 P_R : Given a TM T, does T have property R ?

is undecidable.

Proof. . .

Examples of decision problems to which Rice's theorem can be applied:

- 1. Accepts-L: Given a TM T, is $L(T) = L$? (assuming ...)
- 2. AcceptsSomething: Given a TM T, is there at least one string in $L(T)$?
- 3. AcceptsTwoOrMore: Given a TM T, does $L(T)$ have at least two elements ?
- 4. AcceptsFinite: Given a TM T, is $L(T)$ finite ?
- 5. AcceptsRecursive:

Given a TM T, is $L(T)$ recursive ? (note that ...)

All these problems are undecidable.

Rice's theorem cannot be applied (directly)

• if the decision problem does not involve just one TM Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

• if the decision problem involves the *operation* of the TM WritesSymbol: Given a TM T and a symbol a in the tape alphabet of T , does T ever write a if it starts with an empty tape ? WritesNonblank: Given a TM T, does T ever write a nonblank symbol on input Λ ?

• if the decision problem involves a *trivial* property Accepts-NSA: Given a TM T, is $L(T) = NSA$?