Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

college 13, dinsdag 1 mei 2012

9. Undecidable Problems

9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided9.2. Reductions and the Halting Problem

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language $L\subseteq \Sigma^*,$ if L(T)=L.

T decides L, if T computes the characteristic function $\chi_L: \Sigma^* \to \{0,1\}$

A language L is recursively enumerable, if there is a TM that accepts L,

and L is recursive, if there is a TM that decides L.

Ν

Example 8.30. The Set of Turing Machines Is Countable

Let $\mathcal T$ be set of Turing machines There is injective function $e:\mathcal T\to\{0,1\}^*$ (e is encoding function)

Hence, set of recursively enumerable languages is countable

ω

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable

Hence, because $\mathbb N$ and $\{0,1\}^*$ are the same size, there are uncountably many languages over $\{0,1\}$

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

No list of subsets of $\mathbb N$ is complete, i.e., every list A_0,A_1,A_2,\dots of subsets of $\mathbb N$ leaves out at least one.

Take

$$A = \{i \in \mathbb{N} \mid i \notin A_i\}$$

:	A_9	A_8	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0	A	
	0	0	Н	0	0	0	0	Ц	0	1	0	0
	0	Н	Н	0	0	0	0	0	Н	0	0	1
	0	0	Н	0	Н	0	0	0	Н	Н	Н	2
	0	\vdash	\vdash	0	Н	0	0	\vdash	Н	0	Н	ω
	0	0	Н	0	0	ш	0	0	0	0	0	4
	0	Н	Н	0	щ	0	0	0	0	Н	0	Б
	0	0	Н	0	0	0	0	Н	0	0	Н	6
	0	Н	ш	0	Н	0	0	0	0	0	0	7
	0	0	Н	\vdash	0	0	0	0	Н	0	Н	ω
	0	Н	Н	0	0	0	0	0	0	Н	Н	9
	:	:	:	:	:	:	:	:	:	:	:	:

Theorem 8.32. Not all languages are recursively enumerable. In fact, the set of languages over $\{0,1\}$ that are not recursively enumerable is uncountable.

(including Exercise 8.38)

9. Undecidable Problems

9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided

9

Definition 9.1. The Languages NSA and SA

Let

NSA = SA = SA $\{e(T)\mid T \text{ is a TM, and } e(T)\notin L(T)\}$ $\{e(T)\mid T \text{ is a TM, and } e(T)\in L(T)\}$

(NSA and SA are for "non-self-accepting" and "self-accepting.")

11

12

NSA L(T₁) L(T₁) L(T₂) L(T₂) L(T₃) L(T₄) L(T₅) L(T₆) L(T₆) L(T₇) 001000010 01100000 0010100011 0110100110 001001000 011010001 001000100 01100000 0011000010 011000001

Hence, NSA is not recursively enumerable.

13

Decision problem: problem for which the answer is 'yes' or 'no':

Given ..., is it true that ...?

yes-instances of a decision problem: instances for which the answer is 'yes

no-instances of a decision problem: instances for which the answer is 'no'

From lecture 9:

Crucial features of any encoding function $\boldsymbol{e} :$ (of a Turing machine)

- 1. It should be possible to decide algorithmically, for any string $w\in\{0,1\}^*$, whether w is a legitimate value of e. 2. A string w should represent at most one Turing machine, or
- at most one string z. 3. If w=e(T) or w=e(z), there should be an algorithm for decoding w.

10

:	$L(T_9)$	$L(T_8)$	$L(T_7)$	$L(T_6)$	$L(T_5)$	$L(T_4)$	$L(T_3)$	$L(T_2)$	\sim	\sim	
	0	0	ᆫ	0	0	0	0	ᆫ	0	ц	$e(T_0)$
	0	1	1	0	0	0	0	0	1	0	$e(T_1)$
	0	0	1	0	1	0	0	0	1	Ц	$e(T_2)$
	0	1	1	0	1	0	0	1	1		$e(T_3)$
	0	0	1	0	0	1	0	0	0	0	$e(T_4)$
	0	1	1	0	1	0	0	0	0	1	$e(T_5)$
	0	0	1	0	0	0	0	1	0	0	$e(T_6)$
	0	1	1	0	1	0	0	0	0	0	$e(T_7)$
	0	0	1	1	0	0	0	0	1	0	$e(T_8)$
	0	1	1	0	0	0	0	0	0	1	$e(T_9)$

Theorem 9.2. The language NSA is not recursively enumerable. The language SA is recursively enumerable but not recursive.

Proof...

14

Self-Accepting: Given a TM T, does T accept the string e(T)?

- Three languages corresponding to this problem:
 1. SA: strings representing yes-instances
 2. NSA: strings representing no-instances
 3. ...

15 16

Self-Accepting: Given a TM T, does T accept the string e(T)? For general decision problem P, let e be reasonable encoding of instances I as strings e(I) over alphabet Σ .

1. e is injective
2. string e(I) can be decoded
3. there is algorithm to decide if string over Σ is encoding e(I)

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. E': strings not representing instances

18

17

From lecture 9:

Crucial features of any encoding function e: (of a Turing machine)

- 1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.
 2. A string w should represent at most one Turing machine, or at most one string z.
 3. If w=e(T) or w=e(z), there should be an algorithm for
- decoding w.

19

20

For general decision problem ${\cal P}$ and reasonable encoding e,

 $\begin{array}{ll} Y(P) &=& \{e(I) \mid I \text{ is yes-instance of } P\}\\ N(P) &=& \{e(I) \mid I \text{ is no-instance of } P\}\\ E(P) &=& Y(P) \cup N(P) \end{array}$

 ${\cal E}(P)$ must be recursive

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ , we say that P is decidable if $Y(P) = \{e(I) \mid I \text{ is a yes-instance of } P\}$ is a recursive language.

Theorem 9.4. The decision problem Self-Accepting is undecid-

Proof...

21

22

For every decision problem, there is complementary problem P^\prime_i obtained by changing 'true' to 'false' in statement.

Non-Self-Accepting: Given a TM T, does T fail to accept e(T) ?

Theorem 9.5. For every decision problem P, P is decidable if and only if the complementary problem P' is decidable.

Proof...

24

23

9.2. Reductions and the Halting Problem

Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 $(P_1 \le P_2)$ • if there is an algorithm

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another

- \bullet that finds, for an arbitrary instance I of P_1 , an instance F(I) of $P_2,$
- such that for every I the answers for the two instances are the same, or I is a yes-instance of P_1 if and only if F(I) is a yes-instance of P_2 .

26

25

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another (continued)

If L_1 and L_2 are languages over alphabets Σ_1 and Σ_2 , respectively, we say L_1 is reducible to L_2 ($L_1 \leq L_2$) • if there is a Turing-computable function • $f: \Sigma_1^* \to \Sigma_2^*$ • such that for every $x \in \Sigma_1^*$,

 $x \in L_1$ if and only if $f(x) \in L_2$

Proof...

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2.$ If P_2 is decidable, then P_1 is decidable.

Theorem 9.7. Suppose $L_1\subseteq \Sigma_1^*,\ L_2\subseteq \Sigma_2^*,$ and $L_1\le L_2.$ If L_2 is recursive, then L_1 is recursive.

Less / more formal definitions

27

28

In context of decidability: decision problem $P \approx \text{language } Y(P)$

Question

"is instance ${\it I}$ of ${\it P}$ a yes-instance ٠.

S. essentially the same

"does string x represent yes-instance of P ?"

..е

"is string $x \in Y(P)$?"

Therefore, $P_1 \leq P_2$, if and only if $Y(P_1) \leq Y(P_2)$.

29

Two more decision problems:

Accepts: Given a TM T and a string w, is $w \in L(T)$?

 ${\it Halts}\colon {\it Given a TM}\ T \ {\it and a string}\ w,\ {\it does}\ T\ {\it halt on input}\ w$?

30

Theorem 9.8 Both Accepts and Halts are undecidable.

Proof.

Prove that $Self-Accepting \leq Accepts$

Theorem 9.8 Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting \leq Accepts ...

2. Prove that $Accepts \leq Halts$.

32

31

Application:

n=4; while (n is the sum of two primes) n=n+2;

This program loops forever, if and only if Goldbach's conjecture is true.