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9. Undecidable Problems

9.1. A Language That Can’t Be Accepted,

and a Problem That Can’t Be Decided

9.2. Reductions and the Halting Problem
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Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T ) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.

2



Example 8.30. The Set of Turing Machines Is Countable

Let T be set of Turing machines

There is injective function e : T → {0,1}∗

(e is encoding function)

Hence, set of recursively enumerable languages is countable
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Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}∗ are the same size,

there are uncountably many languages over {0,1}
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Example 8.31. The Set 2N Is Uncountable (continued)

No list of subsets of N is complete,

i.e., every list A0, A1, A2, . . . of subsets of N leaves out at least

one.

Take

A = {i ∈ N | i /∈ Ai}

5



0 1 2 3 4 5 6 7 8 9 . . .
A0 1 0 1 0 0 1 0 0 0 1 . . .
A1 0 1 1 1 0 0 0 0 1 0 . . .
A2 1 0 0 1 0 0 1 0 0 0 . . .
A3 0 0 0 0 0 0 0 0 0 0 . . .
A4 0 0 0 0 1 0 0 0 0 0 . . .
A5 0 0 1 1 0 1 0 1 0 0 . . .
A6 0 0 0 0 0 0 0 0 1 0 . . .
A7 1 1 1 1 1 1 1 1 1 1 . . .
A8 0 1 0 1 0 1 0 1 0 1 . . .
A9 0 0 0 0 0 0 0 0 0 0 . . .
. . .
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0 1 2 3 4 5 6 7 8 9 . . .
A 0 0 1 1 0 0 1 0 1 1 . . .
A0 1 0 1 0 0 1 0 0 0 1 . . .
A1 0 1 1 1 0 0 0 0 1 0 . . .
A2 1 0 0 1 0 0 1 0 0 0 . . .
A3 0 0 0 0 0 0 0 0 0 0 . . .
A4 0 0 0 0 1 0 0 0 0 0 . . .
A5 0 0 1 1 0 1 0 1 0 0 . . .
A6 0 0 0 0 0 0 0 0 1 0 . . .
A7 1 1 1 1 1 1 1 1 1 1 . . .
A8 0 1 0 1 0 1 0 1 0 1 . . .
A9 0 0 0 0 0 0 0 0 0 0 . . .
. . .

Hence, there are uncountable many subsets of N.
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Theorem 8.32. Not all languages are recursively enumerable.

In fact, the set of languages over {0,1} that are not recursively

enumerable is uncountable.

Proof. . .

(including Exercise 8.38)
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From lecture 9:

Crucial features of any encoding function e:

(of a Turing machine)

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine, or

at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.
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Definition 9.1. The Languages NSA and SA

Let

NSA = {e(T ) | T is a TM, and e(T ) /∈ L(T )}

SA = {e(T ) | T is a TM, and e(T ) ∈ L(T )}

(NSA and SA are for “non-self-accepting” and “self-accepting.”)
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e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
. . .
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e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
NSA 0 0 1 1 0 0 1 0 1 1 .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
. . .

Hence, NSA is not recursively enumerable.
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Theorem 9.2. The language NSA is not recursively enumerable.

The language SA is recursively enumerable but not recursive.

Proof. . .
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Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given . . . , is it true that . . . ?

yes-instances of a decision problem:

instances for which the answer is ‘yes’

no-instances of a decision problem:

instances for which the answer is ‘no’

15



Self-Accepting: Given a TM T , does T accept the string e(T )?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. . . .
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Self-Accepting: Given a TM T , does T accept the string e(T )?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. E′: strings not representing instances
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For general decision problem P , let e be reasonable encoding of

instances I as strings e(I) over alphabet Σ.

1. e is injective

2. string e(I) can be decoded

3. there is algorithm to decide if string over Σ is encoding e(I)
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From lecture 9:

Crucial features of any encoding function e:

(of a Turing machine)

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine, or

at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.
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For general decision problem P and reasonable encoding e,

Y (P ) = {e(I) | I is yes-instance of P}

N(P ) = {e(I) | I is no-instance of P}

E(P ) = Y (P ) ∪N(P )

E(P ) must be recursive
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Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of

instances of P over the alphabet Σ, we say that P is decidable if

Y (P ) = {e(I) | I is a yes-instance of P} is a recursive language.
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Theorem 9.4. The decision problem Self-Accepting is undecid-

able.

Proof. . .
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For every decision problem, there is complementary problem P ′,

obtained by changing ‘true’ to ‘false’ in statement.

Non-Self-Accepting:

Given a TM T , does T fail to accept e(T ) ?
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Theorem 9.5. For every decision problem P , P is decidable if

and only if the complementary problem P ′ is decidable.

Proof. . .
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9.2. Reductions and the Halting Problem
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Definition 9.6. Reducing One Decision Problem to Another,

and Reducing One Language to Another

Suppose P1 and P2 are decision problems. We say P1 is reducible

to P2 (P1 ≤ P2)

• if there is an algorithm

• that finds, for an arbitrary instance I of P1, an instance F (I)

of P2,

• such that for every I the answers for the two instances are

the same, or I is a yes-instance of P1 if and only if F (I) is a

yes-instance of P2.
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Definition 9.6. Reducing One Decision Problem to Another,

and Reducing One Language to Another (continued)

If L1 and L2 are languages over alphabets Σ1 and Σ2, respec-

tively, we say L1 is reducible to L2 (L1 ≤ L2)

• if there is a Turing-computable function

• f : Σ∗
1 → Σ∗

2

• such that for every x ∈ Σ∗
1,

x ∈ L1 if and only if f(x) ∈ L2

Less / more formal definitions.
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Theorem 9.7. Suppose L1 ⊆ Σ∗
1, L2 ⊆ Σ∗

2, and L1 ≤ L2. If L2

is recursive, then L1 is recursive.

Suppose P1 and P2 are decision problems, and P1 ≤ P2. If P2 is

decidable, then P1 is decidable.

Proof. . .
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In context of decidability: decision problem P ≈ language Y (P )

Question

“is instance I of P a yes-instance ?”

is essentially the same as

“does string x represent yes-instance of P ?”,

i.e.,

“is string x ∈ Y (P ) ?”

Therefore, P1 ≤ P2, if and only if Y (P1) ≤ Y (P2).
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Two more decision problems:

Accepts: Given a TM T and a string w, is w ∈ L(T ) ?

Halts: Given a TM T and a string w, does T halt on input w ?
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Theorem 9.8 Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting ≤ Accepts . . .
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Theorem 9.8 Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting ≤ Accepts . . .

2. Prove that Accepts ≤ Halts . . .
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Application:

n = 4;

while (n is the sum of two primes)

n = n+2;

This program loops forever, if and only if Goldbach’s conjecture

is true.
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