
Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs.nl

college 13, dinsdag 1 mei 2012

9. Undecidable Problems

9.1. A Language That Can’t Be Accepted,

and a Problem That Can’t Be Decided

9.2. Reductions and the Halting Problem

1

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.

2

Example 8.30. The Set of Turing Machines Is Countable

Let T be set of Turing machines

There is injective function e : T → {0,1}∗

(e is encoding function)

Hence, set of recursively enumerable languages is countable

3

Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}∗ are the same size,

there are uncountably many languages over {0,1}

4

Example 8.31. The Set 2N Is Uncountable (continued)

No list of subsets of N is complete,

i.e., every list A0, A1, A2, . . . of subsets of N leaves out at least

one.

Take

A = {i ∈ N | i /∈ Ai}

5

0 1 2 3 4 5 6 7 8 9 . . .
A0 1 0 1 0 0 1 0 0 0 1 . . .
A1 0 1 1 1 0 0 0 0 1 0 . . .
A2 1 0 0 1 0 0 1 0 0 0 . . .
A3 0 0 0 0 0 0 0 0 0 0 . . .
A4 0 0 0 0 1 0 0 0 0 0 . . .
A5 0 0 1 1 0 1 0 1 0 0 . . .
A6 0 0 0 0 0 0 0 0 1 0 . . .
A7 1 1 1 1 1 1 1 1 1 1 . . .
A8 0 1 0 1 0 1 0 1 0 1 . . .
A9 0 0 0 0 0 0 0 0 0 0 . . .
. . .

6

0 1 2 3 4 5 6 7 8 9 . . .
A 0 0 1 1 0 0 1 0 1 1 . . .
A0 1 0 1 0 0 1 0 0 0 1 . . .
A1 0 1 1 1 0 0 0 0 1 0 . . .
A2 1 0 0 1 0 0 1 0 0 0 . . .
A3 0 0 0 0 0 0 0 0 0 0 . . .
A4 0 0 0 0 1 0 0 0 0 0 . . .
A5 0 0 1 1 0 1 0 1 0 0 . . .
A6 0 0 0 0 0 0 0 0 1 0 . . .
A7 1 1 1 1 1 1 1 1 1 1 . . .
A8 0 1 0 1 0 1 0 1 0 1 . . .
A9 0 0 0 0 0 0 0 0 0 0 . . .
. . .

Hence, there are uncountable many subsets of N.

7

Theorem 8.32. Not all languages are recursively enumerable.

In fact, the set of languages over {0,1} that are not recursively

enumerable is uncountable.

Proof. . .

(including Exercise 8.38)

8

9. Undecidable Problems

9.1. A Language That Can’t Be Accepted,
and a Problem That Can’t Be Decided

9

From lecture 9:

Crucial features of any encoding function e:

(of a Turing machine)

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine, or

at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

10

Definition 9.1. The Languages NSA and SA

Let

NSA = {e(T) | T is a TM, and e(T) /∈ L(T)}

SA = {e(T) | T is a TM, and e(T) ∈ L(T)}

(NSA and SA are for “non-self-accepting” and “self-accepting.”)

11

e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
. . .

12

e(T0) e(T1) e(T2) e(T3) e(T4) e(T5) e(T6) e(T7) e(T8) e(T9) .
NSA 0 0 1 1 0 0 1 0 1 1 .
L(T0) 1 0 1 0 0 1 0 0 0 1 .
L(T1) 0 1 1 1 0 0 0 0 1 0 .
L(T2) 1 0 0 1 0 0 1 0 0 0 .
L(T3) 0 0 0 0 0 0 0 0 0 0 .
L(T4) 0 0 0 0 1 0 0 0 0 0 .
L(T5) 0 0 1 1 0 1 0 1 0 0 .
L(T6) 0 0 0 0 0 0 0 0 1 0 .
L(T7) 1 1 1 1 1 1 1 1 1 1 .
L(T8) 0 1 0 1 0 1 0 1 0 1 .
L(T9) 0 0 0 0 0 0 0 0 0 0 .
. . .

Hence, NSA is not recursively enumerable.

13

Theorem 9.2. The language NSA is not recursively enumerable.

The language SA is recursively enumerable but not recursive.

Proof. . .

14

Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given . . . , is it true that . . . ?

yes-instances of a decision problem:

instances for which the answer is ‘yes’

no-instances of a decision problem:

instances for which the answer is ‘no’

15

Self-Accepting: Given a TM T , does T accept the string e(T)?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. . . .

16

Self-Accepting: Given a TM T , does T accept the string e(T)?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. E′: strings not representing instances

17

For general decision problem P , let e be reasonable encoding of

instances I as strings e(I) over alphabet Σ.

1. e is injective

2. string e(I) can be decoded

3. there is algorithm to decide if string over Σ is encoding e(I)

18

From lecture 9:

Crucial features of any encoding function e:

(of a Turing machine)

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine, or

at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

19

For general decision problem P and reasonable encoding e,

Y (P) = {e(I) | I is yes-instance of P}

N(P) = {e(I) | I is no-instance of P}

E(P) = Y (P) ∪N(P)

E(P) must be recursive

20

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of

instances of P over the alphabet Σ, we say that P is decidable if

Y (P) = {e(I) | I is a yes-instance of P} is a recursive language.

21

Theorem 9.4. The decision problem Self-Accepting is undecid-

able.

Proof. . .

22

For every decision problem, there is complementary problem P ′,

obtained by changing ‘true’ to ‘false’ in statement.

Non-Self-Accepting:

Given a TM T , does T fail to accept e(T) ?

23

Theorem 9.5. For every decision problem P , P is decidable if

and only if the complementary problem P ′ is decidable.

Proof. . .

24

9.2. Reductions and the Halting Problem

25

Definition 9.6. Reducing One Decision Problem to Another,

and Reducing One Language to Another

Suppose P1 and P2 are decision problems. We say P1 is reducible

to P2 (P1 ≤ P2)

• if there is an algorithm

• that finds, for an arbitrary instance I of P1, an instance F (I)

of P2,

• such that for every I the answers for the two instances are

the same, or I is a yes-instance of P1 if and only if F (I) is a

yes-instance of P2.

26

Definition 9.6. Reducing One Decision Problem to Another,

and Reducing One Language to Another (continued)

If L1 and L2 are languages over alphabets Σ1 and Σ2, respec-

tively, we say L1 is reducible to L2 (L1 ≤ L2)

• if there is a Turing-computable function

• f : Σ∗
1 → Σ∗

2

• such that for every x ∈ Σ∗
1,

x ∈ L1 if and only if f(x) ∈ L2

Less / more formal definitions.

27

Theorem 9.7. Suppose L1 ⊆ Σ∗
1, L2 ⊆ Σ∗

2, and L1 ≤ L2. If L2

is recursive, then L1 is recursive.

Suppose P1 and P2 are decision problems, and P1 ≤ P2. If P2 is

decidable, then P1 is decidable.

Proof. . .

28

In context of decidability: decision problem P ≈ language Y (P)

Question

“is instance I of P a yes-instance ?”

is essentially the same as

“does string x represent yes-instance of P ?”,

i.e.,

“is string x ∈ Y (P) ?”

Therefore, P1 ≤ P2, if and only if Y (P1) ≤ Y (P2).

29

Two more decision problems:

Accepts: Given a TM T and a string w, is w ∈ L(T) ?

Halts: Given a TM T and a string w, does T halt on input w ?

30

Theorem 9.8 Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting ≤ Accepts . . .

31

Theorem 9.8 Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting ≤ Accepts . . .

2. Prove that Accepts ≤ Halts . . .

32

Application:

n = 4;

while (n is the sum of two primes)

n = n+2;

This program loops forever, if and only if Goldbach’s conjecture

is true.

33

