Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

college 12, maandag 23 april 2012

8.4 Context-Sensitive Languages and the Chomsky Hierarchy 8.5. Not Every Language is Recursively Enumerable ω Recursively Enumerable Languages

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language $L\subseteq \Sigma^*,$ if L(T)=L.

T decides L,

if ${\cal T}$ computes the characteristic function $\chi_L:\Sigma^* \to \{0,1\}$

A language L is recursively enumerable if there is a TM that accepts L,

and L is $\mathit{recursive}$, if there is a TM that decides L.

N

Definition 8.10. Unrestricted grammars

An unrestricted grammar is a 4-tuple $G=(V,\Sigma,S,P)$, where V and Σ are disjoint sets of variables and terminals, respectively, S is an element of V called the start symbol, and P is a set of productions of the form

 $\alpha \to \beta$

where $\alpha, \beta \in (V \cup \Sigma)^*$ and α contains at least one variable.

ω

Theorem 8.13.

For every unrestricted grammar G, there is a Turing machine with L(T) = L(G).

Proof.

- Move past input
- Simulate derivation in ${\cal G}$ on the tape of a Turing machine

Theorem 8.14. For every Turing machine T with input alphabet there is an unrestricted grammar G generating the language $L(T) \subseteq \Sigma^*$.

- Proof.
- 1. Generate (every possible) input string for T (two copies), with additional $(\Delta\Delta)$'s and state.
 2. Simulate computation of T for this input string as derivation in grammar (on second copy).
 3. If T reaches accept state, reconstruct original input string.

Ad 2.

Ad 3. 2. Move $\delta(p,a)=(q,b,R)$ of T yields production $p(\sigma_1a) \to (\sigma_1b)q$ 3. Propagate h_a all over the string $h_a(\sigma_1\sigma_2) \to \sigma_1$, for $\sigma_1 \in \Sigma$ $h_a(\Delta\sigma_2) \to \Lambda$

8.4. Context-Sensitive Languages and the Chomsky Hierarchy

	Ϋ́	unrestr. grammar TM	re. languages
	LBA	cs. grammar	cs. languages
	PDA	cf. grammar	cf. languages
reg. expression	FA	reg. grammar	reg. languages reg. grammar

Definition 8.16. Context-Sensitive Grammars A context-sensitive grammar (CSG) is an unrestricted grammar in which no production is length-decreasing. In other words, every production is of the form $\alpha \to \beta$, where $|\beta| \geq |\alpha|$.

generated by a context-sensitive grammar A language is a context-sensitive language (CSL) if it can be

Example 8.12. A Grammar Generating $\{a^nb^nc^n \mid n \geq 1\}$

$$S \rightarrow SABC \mid LABC$$

$$BA \rightarrow AB \quad CB \rightarrow BC \quad CA \rightarrow AC$$

a $aA \rightarrow$ aaaBab $bB \rightarrow bb$ $bC \to bc$ cC $\rightarrow cc$

Not context-sensitive

Example 8.17. A CSG Generating $L = \{a^n b^n c^n \mid n \ge 1\}$

$$S \to SABC \mid ABC$$

$$\to AB \quad CB \to BC \quad CA \to AC$$

$$\mathcal{A} \rightarrow a \quad aA \rightarrow aa \quad aB \rightarrow ab \quad bB \rightarrow bb \quad bC \rightarrow bc \quad cC \rightarrow cc$$

9

Theorem 8.19. If $L \subseteq \Sigma^*$ is a context-sensitive language, then there is a linearbounded automaton that accepts

Proof. Much like the proof of Theorem 8.13...

11

12

Theorem 8.19. If $L \subseteq \Sigma^*$ is a co bounded automaton that accepts Σ^* is a context-sensitive language, then there is a linear-

Proof. Much like the proof of Theorem 8.13, except

- two tape tracks instead of move past inputreject also if we (want to) write on]

Theorem 8.14. For every Turing machine T with input alphabet Σ , there is an unrestricted grammar G generating the language $L(T) \subseteq \Sigma^*$.

- **Proof**. 1. Ger
- 1. Generate (every possible) input string for T (two copies), with additional $(\Delta\Delta)$'s and state.
 2. Simulate computation of T for this input string as derivation in grammar (on second copy).
 3. If T reaches accept state, reconstruct original input string.

- Ad 2. Move $\delta(p,a)=(q,b,R)$ of T yields production $p(\sigma_1a)\to (\sigma_1b)q$ Ad 3. Propagate h_a all over the string $h_a(\sigma_1\sigma_2)\to\sigma_1$, for $\sigma_1\in\Sigma$ $h_a(\Delta\sigma_2)\to\Lambda$

Definition 8.10. Linear-Bounded Automata A linear-bounded automaton (LBA) is a 5-tuple $M=(Q,\Sigma,\Gamma,q_0,\delta)$ that is identical to a nondeterministic Turing machine, with the following exception.

There are two extra tape symbols [and], assumed not to be

elements of the tape alphabet Γ . The initial configuration of M corresponding to input x is $q_0[x]$, with the symbol [in the leftmost square and the symbol] in the first square to the right of x.

the right of the]. During its computation, ${\cal M}$ is not permitted to replace either of these brackets or to move its tape head to the left of the [or to

10

Theorem 8.13.

For every unrestricted grammar G, there is a Turing machine T with L(T) = L(G).

Proof.

- Move past input
- Simulate derivation in ${\cal G}$ on the tape of a Turing machine

Theorem 8.20. If $L\subseteq \Sigma^*$ is accepted by a linear-bounded automaton $M=(Q,\Sigma,\Gamma,q_0,\delta)$, then there is a context-sensitive grammar G generating L-

Proof. Much like proof of Theorem 8.14.

Theorem 8.20. If $L\subseteq \Sigma^*$ is accepted by a linear-bounded automaton $M=(Q,\Sigma,\Gamma,q_0,\delta)$, then there is a context-sensitive grammar G generating $L-\{\Lambda\}$.

Proof. Much like proof of Theorem 8.14, except

- consider $h_a(\sigma_1\sigma_2)$ as a single symbol no additional ($\Delta\Delta$)'s needed incorporate [and] in leftmost/rightmost symbols of string

16

15

Chomsky hierarchy

	ΤM	unrestr. grammar	re. languages	0
	LBA	cs. grammar	cs. languages	Н
	PDA	cf. grammar	cf. languages	N
reg. expression	FA	reg. grammar	reg. languages reg. grammar	ω

What about recursive languages?

17

18

Theorem 8.22. Every context-sensitive language is recursive.

Proof...

Chomsky hierarchy

	Z Z	unrestr. grammar	re. languages	0
	LBA	cs. grammar	cs. languages	1
	PDA	cf. grammar	cf. languages	N
reg. expression	FA	reg. grammar	reg. languages reg. grammar	ω

 $\mathcal{S}_3\subseteq\mathcal{S}_2\subseteq\mathcal{S}_1\subseteq\mathcal{R}\subseteq\mathcal{S}_0$

19

20

(modulo A)

8.5. Not Every Language is Recursively Enumerable

From Fundamentele Informatica 1:

Definition 8.23. A Set A of the Same Size as B or Larger Than B

Two sets A and B, either finite or infinite, are the same size if there is a bijection $f:A\to B.$

A is larger than B if some subset of A is the same size as B but A itself is not.

21

From Fundamentele Informatica 1:

Definition 8.24. Countably Infinite and Countable Sets

A set A is countably infinite (the same size as $\mathbb N$) if there is a bijection $f:\mathbb N\to A$, or a list a_0,a_1,\ldots of elements of A such that every element of A appears exactly once in the list.

 ${\cal A}$ is ${\it countable}$ if ${\cal A}$ is either finite or countably infinite.

22

Theorem 8.25.
Every infinite set has a countably infinite subset, and every subset of a countable set is countable.

(proof of second claim is Exercise 8.35)

Example 8.26. The Set $\mathbb{N}\times\mathbb{N}$ is Countable

$$\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}\$$

although $\mathbb{N}\times\mathbb{N}$ looks much bigger than \mathbb{N}

24

23

Example 8.28.A Countable Union of Countable Sets Is Countable

$$S = \bigcup_{i=0}^{\infty} S_i$$

Same construction as in Example 8.26, but...

25

26

Example 8.30. The Set of Turing Machines Is Countable

Let $\mathcal T$ be set of Turing machines There is injective function $e:\mathcal T\to \{0,1\}^*$ (e is encoding function)

Hence, set of recursively enumerable languages is countable

27

28

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

one. No list of subsets of $\mathbb N$ is complete, i.e., every list A_0,A_1,A_2,\dots of subsets of $\mathbb N$ leaves out at least

Take

$$A = \{i \in \mathbb{N} \mid i \notin A_i\}$$

29

Theorem 8.32. Not all languages are recursively enumerable. In fact, the set of languages over $\{0,1\}$ that are not recursively enumerable is uncountable.

(including Exercise 8.38)

Example 8.29. Languages Are Countable Sets

$$L \subseteq \Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i$$

Two ways to list Σ^*

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable

Hence, because $\mathbb N$ and $\{0,1\}^*$ are the same size, there are uncountably many languages over $\{0,1\}$

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

$$A = \{i \in \mathbb{N} \mid i \notin A_i\}$$

$$A_0 = \{0,2,5,9\}$$

$$A_1 = \{1,2,3,8,12,...\}$$

$$A_2 = \{0,3,6\}$$

$$A_3 = \emptyset$$

$$A_4 = \{4\}$$

$$A_5 = \{2,3,5,7,11,...\}$$

$$A_6 = \{8,16,24,...\}$$

$$A_7 = \mathbb{N}$$

$$A_8 = \{1,3,5,7,9,...\}$$

$$A_9 = \{n \in \mathbb{N} \mid n > 12\}$$

30