
Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs.nl

college 12, maandag 23 april 2012

8. Recursively Enumerable Languages

8.4. Context-Sensitive Languages and the Chomsky Hierarchy

8.5. Not Every Language is Recursively Enumerable

1

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.

2

Definition 8.10. Unrestricted grammars

An unrestricted grammar is a 4-tuple G = (V,Σ, S, P), where V

and Σ are disjoint sets of variables and terminals, respectively,

S is an element of V called the start symbol, and P is a set of

productions of the form

α → β

where α, β ∈ (V ∪Σ)∗ and α contains at least one variable.

3

Theorem 8.13.

For every unrestricted grammar G, there is a Turing machine T

with L(T) = L(G).

Proof.

1. Move past input

2. Simulate derivation in G on the tape of a Turing machine

3. Equal

4

Theorem 8.14.

For every Turing machine T with input alphabet Σ,

there is an unrestricted grammar G
generating the language L(T) ⊆ Σ∗.

Proof.

1. Generate (every possible) input string for T (two copies),

with additional (∆∆)’s and state.

2. Simulate computation of T for this input string as derivation

in grammar (on second copy).

3. If T reaches accept state, reconstruct original input string.

Ad 2. Move δ(p, a) = (q, b, R) of T
yields production p(σ1a) → (σ1b)q

Ad 3. Propagate ha all over the string

ha(σ1σ2) → σ1, for σ1 ∈ Σ

ha(∆σ2) → Λ

5

8.4. Context-Sensitive Languages
and the Chomsky Hierarchy

reg. languages reg. grammar FA reg. expression

cf. languages cf. grammar PDA

cs. languages cs. grammar LBA

re. languages unrestr. grammar TM

6

Definition 8.16. Context-Sensitive Grammars

A context-sensitive grammar (CSG) is an unrestricted grammar

in which no production is length-decreasing.

In other words, every production is of the form α → β, where

|β| ≥ |α|.

A language is a context-sensitive language (CSL) if it can be

generated by a context-sensitive grammar.

7

Example 8.12. A Grammar Generating {anbncn | n ≥ 1}

S → SABC | LABC

BA → AB CB → BC CA → AC

LA → a aA → aa aB → ab bB → bb bC → bc cC → cc

Not context-sensitive.

8

Example 8.17. A CSG Generating L = {anbncn | n ≥ 1}

S → SABC | ABC

BA → AB CB → BC CA → AC

A → a aA → aa aB → ab bB → bb bC → bc cC → cc

9

Definition 8.10. Linear-Bounded Automata

A linear-bounded automaton (LBA) is a 5-tuple M = (Q,Σ,Γ, q0, δ)

that is identical to a nondeterministic Turing machine, with the

following exception.

There are two extra tape symbols [and], assumed not to be

elements of the tape alphabet Γ.

The initial configuration of M corresponding to input x is q0[x],

with the symbol [in the leftmost square and the symbol] in the

first square to the right of x.

During its computation, M is not permitted to replace either of

these brackets or to move its tape head to the left of the [or to

the right of the].

10

Theorem 8.19.

If L ⊆ Σ∗ is a context-sensitive language, then there is a linear-

bounded automaton that accepts L.

Proof. Much like the proof of Theorem 8.13. . .

11

Theorem 8.13.

For every unrestricted grammar G, there is a Turing machine T

with L(T) = L(G).

Proof.

1. Move past input

2. Simulate derivation in G on the tape of a Turing machine

3. Equal

12

Theorem 8.19.

If L ⊆ Σ∗ is a context-sensitive language, then there is a linear-

bounded automaton that accepts L.

Proof. Much like the proof of Theorem 8.13, except

• two tape tracks instead of move past input

• reject also if we (want to) write on]

13

Theorem 8.20. If L ⊆ Σ∗ is accepted by a linear-bounded

automaton M = (Q,Σ,Γ, q0, δ), then there is a context-sensitive

grammar G generating L− {Λ}.

Proof. Much like proof of Theorem 8.14. . .

14

Theorem 8.14.

For every Turing machine T with input alphabet Σ,

there is an unrestricted grammar G
generating the language L(T) ⊆ Σ∗.

Proof.

1. Generate (every possible) input string for T (two copies),

with additional (∆∆)’s and state.

2. Simulate computation of T for this input string as derivation

in grammar (on second copy).

3. If T reaches accept state, reconstruct original input string.

Ad 2. Move δ(p, a) = (q, b, R) of T
yields production p(σ1a) → (σ1b)q

Ad 3. Propagate ha all over the string

ha(σ1σ2) → σ1, for σ1 ∈ Σ

ha(∆σ2) → Λ

15

Theorem 8.20. If L ⊆ Σ∗ is accepted by a linear-bounded

automaton M = (Q,Σ,Γ, q0, δ), then there is a context-sensitive

grammar G generating L− {Λ}.

Proof. Much like proof of Theorem 8.14, except

• consider ha(σ1σ2) as a single symbol

• no additional (∆∆)’s needed

• incorporate [and] in leftmost/rightmost symbols of string

16

Chomsky hierarchy

3 reg. languages reg. grammar FA reg. expression

2 cf. languages cf. grammar PDA

1 cs. languages cs. grammar LBA

0 re. languages unrestr. grammar TM

What about recursive languages?

17

Theorem 8.22. Every context-sensitive language is recursive.

Proof. . .

18

Chomsky hierarchy

3 reg. languages reg. grammar FA reg. expression

2 cf. languages cf. grammar PDA

1 cs. languages cs. grammar LBA

0 re. languages unrestr. grammar TM

S3 ⊆ S2 ⊆ S1 ⊆ R ⊆ S0

(modulo Λ)

19

8.5. Not Every Language
is Recursively Enumerable

20

From Fundamentele Informatica 1:

Definition 8.23.

A Set A of the Same Size as B or Larger Than B

Two sets A and B, either finite or infinite, are the same size if

there is a bijection f : A → B.

A is larger than B if some subset of A is the same size as B but

A itself is not.

21

From Fundamentele Informatica 1:

Definition 8.24.

Countably Infinite and Countable Sets

A set A is countably infinite (the same size as N) if there is a

bijection f : N → A, or a list a0, a1, . . . of elements of A such that

every element of A appears exactly once in the list.

A is countable if A is either finite or countably infinite.

22

Theorem 8.25.

Every infinite set has a countably infinite subset,

and every subset of a countable set is countable.

Proof. . .

(proof of second claim is Exercise 8.35)

23

Example 8.26. The Set N× N is Countable

N× N = {(i, j) | i, j ∈ N}

although N× N looks much bigger than N

24

Example 8.28.

A Countable Union of Countable Sets Is Countable

S =
∞⋃

i=0

Si

Same construction as in Example 8.26, but. . .

25

Example 8.29. Languages Are Countable Sets

L ⊆ Σ∗ =
∞⋃

i=0

Σi

Two ways to list Σ∗

26

Example 8.30. The Set of Turing Machines Is Countable

Let T be set of Turing machines

There is injective function e : T → {0,1}∗

(e is encoding function)

Hence, set of recursively enumerable languages is countable

27

Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}∗ are the same size,

there are uncountably many languages over {0,1}

28

Example 8.31. The Set 2N Is Uncountable (continued)

No list of subsets of N is complete,

i.e., every list A0, A1, A2, . . . of subsets of N leaves out at least

one.

Take

A = {i ∈ N | i /∈ Ai}

29

Example 8.31. The Set 2N Is Uncountable (continued)

A = {i ∈ N | i /∈ Ai}

A0 = {0,2,5,9}

A1 = {1,2,3,8,12, . . .}

A2 = {0,3,6}

A3 = ∅

A4 = {4}

A5 = {2,3,5,7,11, . . .}

A6 = {8,16,24, . . .}

A7 = N

A8 = {1,3,5,7,9, . . .}

A9 = {n ∈ N | n > 12}

. . .

30

Theorem 8.32. Not all languages are recursively enumerable.

In fact, the set of languages over {0,1} that are not recursively

enumerable is uncountable.

Proof. . .

(including Exercise 8.38)

31

