Fundamentele Informatica 3

voorjaar 2012

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs.nl

college 11, maandag 16 april 2012

Recursively Enumerable Languages
 8.3. More General Grammars
 8.4. Context-Sensitive Languages and the Chomsky Hierarchy

Huiswerkopgave 3, inleverdatum 16 april 2012, 13:45 uur

Ν

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language $L\subseteq \Sigma^*,$ if L(T)=L.

T decides L, if T computes the characteristic function $\chi_L:\Sigma^*$

 $\rightarrow \{0,1\}$

A language L is recursively enumerable, if there is a TM that accepts L,

and L is recursive, if there is a TM that decides L.

ω

∞ :3 More General Grammars

	TM	unrestr. grammar	re. languages
	PDA	cf. grammar	cf. languages
reg. expression	FA	reg. grammar	reg. languages

Definition 8.10. Unrestricted grammars

An unrestricted grammar is a 4-tuple $G=(V,\Sigma,S,P)$, where V and Σ are disjoint sets of variables and terminals, respectively, S is an element of V called the start symbol, and P is a set of productions of the form

 $\alpha \to \beta$

where $\alpha, \beta \in (V \cup \Sigma)^*$ and α contains at least one variable.

Notation as for CFGs:

 $L(G) = \{ x \in \Sigma^* \mid S \Rightarrow_G^* x \}$

but...

Example 8.11. A Grammar Generating $\{a^{2^k} \mid k \in \mathbb{N}\}$

Example 8.11. A Grammar Generating $\{a^{2^k} \mid k \in \mathbb{N}\}$

 $\{a,a^2,a^4,a^8,a^{16},\ldots\}=\{a,aa,aaaa,aaaaaaaaa,aaaaaaaaaaaaaaaa,\ldots\}$

 \mathcal{S} $' \rightarrow LaR$

 $L \to LD$

 $Da \to aaD$

 $DR \to R$

 $L \rightarrow \wedge$

 $R \rightarrow \wedge$

Example 8.12. A Grammar Generating $\{a^nb^nc^n\mid n\geq 1\}$

 $S \to SABC \mid LABC$

Example 8.12. A Grammar Generating $\{a^nb^nc^n\mid n\geq 1\}$

 $BA \to AB$ $CB \to BC$ $CA \to AC$

 $LA \to a$ $aA \rightarrow aa$ $aB \to ab \quad bB \to bb$ $bC \rightarrow bc$ $cC \rightarrow cc$

9

10

Theorem 8.13. For every unrestricted grammar G, there is a Turing machine T with L(T) = L(G).

Exercise.

Use (the second part of) the construction from Theorem 8.13 to obtain a TM simulating a derivation in the unrestricted grammar with productions

$$S \rightarrow aBS \mid \Lambda \quad aB \rightarrow Ba \quad Ba \rightarrow aB \quad B \rightarrow b$$

11

12

Theorem 8.14. For every Turing machine T with input alphabet Σ , there is an unrestricted grammar G generating the language $L(T) \subseteq \Sigma^*$.

Proof.

- Generate (every possible) input string for T.
 Simulate computation of T for this input string as derivation in grammar.
 If T reaches accept state, reconstruct original input string.

Notation:

description of tape contents: $x\underline{\sigma}y$ or $x\underline{y}$

 $configuration \ xqy = xqy\Delta = xqy\Delta\Delta$

initial configuration corresponding to input x: $q_0 \Delta x$

In the third edition of the book, a configuration is denoted as $(q,x\underline{y})$ or $(q,x\underline{\sigma}y)$ instead of xqy or $xq\sigma y$. This old notation is also allowed for Fundamentele Informatica 3.

14

13

8.4. Context-Sensitive Languages and the Chomsky Hierarchy

	ML	unrestr. grammar TM	re. languages
	LBA	cs. grammar	cs. languages
	PDA	cf. grammar	cf. languages
reg. expression	FA	reg. grammar	reg. languages reg. grammar

15

Definition 8.16. Context-Sensitive Grammars A context-sensitive grammar (CSG) is an unrestricted grammar in which no production is length-decreasing. In other words, every production is of the form $\alpha \to \beta$, where $|\beta| \geq |\alpha|$.

A language is a context-sensitive language (CSL) if it can be generated by a context-sensitive grammar.

17

18

Example 8.17. A CSG Generating $L = \{a^nb^nc^n \mid n \geq 1\}$

$$S \rightarrow SABC \mid ABC$$

$$BA \to AB$$
 $CB \to BC$ $CA \to AC$

$$\mathcal{A} \rightarrow a \quad aA \rightarrow aa \quad aB \rightarrow ab \quad bB \rightarrow bb \quad bC \rightarrow bc \quad cC \rightarrow cc$$

19

Theorem 8.19. If $L\subseteq \Sigma^*$ is a context-sensitive language, then there is a linear-bounded automaton that accepts L.

21

Example 8.12. A Grammar Generating $\{a^nb^nc^n \mid n \geq 1\}$

$$S \to SABC \mid LABC$$

$$BA \to AB \quad CB \to BC \quad CA \to AC$$

$$LA \rightarrow a \quad aA \rightarrow aa \quad aB \rightarrow ab \quad bB \rightarrow bb \quad bC \rightarrow bc \quad cC \rightarrow cc$$

Not context-sensitive.

Definition 8.10. Linear-Bounded Automata A linear-bounded automaton (LBA) is a 5-tuple $M=(Q,\Sigma,\Gamma,q_0,\delta)$ that is identical to a nondeterministic Turing machine, with the following exception.

There are two extra tape symbols [and], assumed not to be elements of the tape alphabet Γ . The initial configuration of M corresponding to input x is $q_0[x]$, with the symbol [in the leftmost square and the symbol] in the

first square to the right of x. During its computation, M is not permitted to replace either of these brackets or to move its tape head to the left of the [or to the right of the].

20