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Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T ) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.
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8.3. More General Grammars

reg. languages reg. grammar FA reg. expression

cf. languages cf. grammar PDA

re. languages unrestr. grammar TM
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Definition 8.10. Unrestricted grammars

An unrestricted grammar is a 4-tuple G = (V,Σ, S, P ), where V

and Σ are disjoint sets of variables and terminals, respectively,

S is an element of V called the start symbol, and P is a set of

productions of the form

α → β

where α, β ∈ (V ∪Σ)∗ and α contains at least one variable.
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Notation as for CFGs:

α ⇒∗
G β

L(G) = {x ∈ Σ∗ | S ⇒∗
G x}

but. . .
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Example 8.11. A Grammar Generating {a2
k
| k ∈ N}

{a, a2, a4, a8, a16, . . .} = {a, aa, aaaa, aaaaaaaa, aaaaaaaaaaaaaaaa, . . .}
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Example 8.11. A Grammar Generating {a2
k
| k ∈ N}

{a, a2, a4, a8, a16, . . .} = {a, aa, aaaa, aaaaaaaa, aaaaaaaaaaaaaaaa, . . .}

S → LaR L → LD Da → aaD DR → R L → Λ R → Λ
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Example 8.12. A Grammar Generating {anbncn | n ≥ 1}
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Example 8.12. A Grammar Generating {anbncn | n ≥ 1}

S → SABC | LABC

BA → AB CB → BC CA → AC

LA → a aA → aa aB → ab bB → bb bC → bc cC → cc
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Theorem 8.13.

For every unrestricted grammar G, there is a Turing machine T

with L(T ) = L(G).
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Exercise.

Use (the second part of) the construction from Theorem 8.13 to

obtain a TM simulating a derivation in the unrestricted grammar

with productions

S → aBS | Λ aB → Ba Ba → aB B → b
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Theorem 8.14.

For every Turing machine T with input alphabet Σ,

there is an unrestricted grammar G

generating the language L(T ) ⊆ Σ∗.

Proof.

1. Generate (every possible) input string for T .

2. Simulate computation of T for this input string as derivation

in grammar.

3. If T reaches accept state, reconstruct original input string.
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Notation:

description of tape contents: xσy or xy

configuration xqy = xqy∆ = xqy∆∆

initial configuration corresponding to input x: q0∆x

In the third edition of the book, a configuration is denoted as

(q, xy) or (q, xσy) instead of xqy or xqσy.

This old notation is also allowed for Fundamentele Informatica 3.
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8.4. Context-Sensitive Languages
and the Chomsky Hierarchy

reg. languages reg. grammar FA reg. expression

cf. languages cf. grammar PDA

cs. languages cs. grammar LBA

re. languages unrestr. grammar TM
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Definition 8.16. Context-Sensitive Grammars

A context-sensitive grammar (CSG) is an unrestricted grammar

in which no production is length-decreasing.

In other words, every production is of the form α → β, where

|β| ≥ |α|.

A language is a context-sensitive language (CSL) if it can be

generated by a context-sensitive grammar.
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Example 8.12. A Grammar Generating {anbncn | n ≥ 1}

S → SABC | LABC

BA → AB CB → BC CA → AC

LA → a aA → aa aB → ab bB → bb bC → bc cC → cc

Not context-sensitive.
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Example 8.17. A CSG Generating L = {anbncn | n ≥ 1}

S → SABC | ABC

BA → AB CB → BC CA → AC

A → a aA → aa aB → ab bB → bb bC → bc cC → cc
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Definition 8.10. Linear-Bounded Automata

A linear-bounded automaton (LBA) is a 5-tuple M = (Q,Σ,Γ, q0, δ)

that is identical to a nondeterministic Turing machine, with the

following exception.

There are two extra tape symbols [ and ], assumed not to be

elements of the tape alphabet Γ.

The initial configuration of M corresponding to input x is q0[x],

with the symbol [ in the leftmost square and the symbol ] in the

first square to the right of x.

During its computation, M is not permitted to replace either of

these brackets or to move its tape head to the left of the [ or to

the right of the ].
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Theorem 8.19.

If L ⊆ Σ∗ is a context-sensitive language, then there is a linear-

bounded automaton that accepts L.

Proof. . .
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