
Fundamentele Informatica 3

Antwoorden op geselecteerde opgaven uit

Hoofdstuk 9
John Martin: Introduction to Languages and the Theory of Computation

Jetty Kleijn

Najaar 2008

9.1 See Figure 6.5: a TM accepting {ss | s ∈ {a, b}∗}. We give the configu-
ration sequence of the computation for input abaa:
(q0,∆aaba) ⊢ (q1,∆aaba) ⊢ (q2,∆Aaba) ⊢ (q2,∆Aaba) ⊢
(q2,∆Aaba) ⊢ (q2,∆Aaba∆) ⊢ (q3,∆Aaba) ⊢ (q4,∆AabA) ⊢
(q4,∆AabA) ⊢ (q4,∆AabA) ⊢ (q1,∆AabA) ⊢ (q2,∆AAbA) ⊢
(q2,∆AAbA) ⊢ (q3,∆AAbA) ⊢ (q4,∆AABA) ⊢ (q1,∆AABA) ⊢
— abaa is of even length —
(q5,∆AABA) ⊢ (q5,∆AaBA) ⊢ (q5,∆aaBA) ⊢ (q6,∆aaBA) ⊢
(q8,∆AaBA) ⊢ (q8,∆AaBA) ⊢ CRASH
or, in other words, ⊢ (hr,∆AaBA).
abaa is not of the form ss and not accepted by the Turing machine.

9.2

a (q0,∆ab) ⊢ (q1,∆ab) ⊢ (q1,∆ab) ⊢ (q1,∆ab∆) ⊢
(q2,∆ab) ⊢ (q5,∆a∆∆) ⊢ (q6,∆a∆b∆) ⊢ (q7,∆a∆bb) ⊢
(q7,∆a∆bb) ⊢ (q2,∆a∆bb) ⊢ (q3,∆∆∆bb) ⊢ (q4,∆∆abb) ⊢
(q4,∆∆abb) ⊢ (q4,∆∆abb∆) ⊢ (q7,∆∆abba) ⊢ (q7,∆∆abba) ⊢
(q7,∆∆abba) ⊢ (q7,∆∆abba) ⊢ (q2,∆∆abba) ⊢ (ha,∆∆abba)

b (q0,∆baa) ⊢ (q1,∆baa) ⊢∗ (q1,∆abb∆) ⊢ (q2,∆abb) ⊢
(q5,∆ab∆∆) ⊢ (q6,∆ab∆b∆) ⊢ (q7,∆ab∆bb) ⊢ (q7,∆ab∆bb) ⊢
(q2,∆ab∆bb) ⊢ (q5,∆a∆∆bb) ⊢ (q6,∆a∆bbb) ⊢∗ (q6,∆a∆bbb∆) ⊢
(q7,∆a∆bbbb) ⊢∗ (q7,∆a∆bbbb) ⊢ (q2,∆a∆bbbb) ⊢ (q3,∆∆∆bbbb) ⊢
(q4,∆∆abbbb) ⊢∗ (q4,∆∆abbbb∆) ⊢ (q7,∆∆abbbba) ⊢∗ (q7,∆∆abbbba) ⊢
(q2,∆∆abbbba) ⊢ (ha,∆∆abbbba)

1

c After going to cell 1 and entering state q1 the Turing machine moves to
the right of (what still remains of) the input string (state q2); it remembers
and erases the last symbol (q3 for a; q5 for b) and moves it one cell to the
right after which it proceeds (in q4, resp. q5) to the first empty cell to the
right where it writes a, resp. b. Then it moves back to the left (in q7) until
it encounters an empty cell to the left of which the last symbol of the rest
of the input is waiting. The process repeats from q2 until no input is left,
after which the Turing machine goes from q2 to the accepting state ha.
We conclude that (q0,∆w) ⊢∗ (ha,∆∆xxr) for all x ∈ {a, b}∗: the machine
adds the mirror image to a word (and the input is shifted one cell to the
right).

9.6

d We consider the language L consisting of balanced strings of parentheses,
to be precise

L = {w ∈ {(,)}∗ | n((w) = n)(w) and n((u) ≥ n)(u) for every prefix u of w}

A Turing machine accepting L could work as follows:
— mark cell 0 to avoid falling off the tape in a later stage: ∆ is replaced
by $; next we go from left to right to the end of the input string (which is
accepted immediately if it is empty, that is, cell 1 contains a ∆); the first
(blank) cell right from the input is marked as $ and the head moves back to
the beginning; — after this bookkeeping the real work can begin:
move to the right to the first occurrence of a), erase it and move to the left
and erase the first (thus encountered; repeat this procedure until
— either no right parenthesis is found anymore; thus the head hits $ when
walking to the right after which we go back to the left and reject if a (is
seen, otherwise only ∆’s are are seen until the $ in cell 0 and we accept; —
or when moving to the left no (is found anymore; we thus hit $ in cell 0
and reject.
Draw a TM transition diagram for the algorithm just sketched.
How would you solve the problem if more types of parenthesis are used?

f In order to construct a Turing machine which will accept the language
{www | w ∈ {a, b}∗} we distinguish the following subtasks:
— determining whether the length of a given input word is a multiple of
three (if not, it must be rejected);
— dividing the input accordingly in three consecutive subwords of the same
length;
— determining whether these subwords are the same.

2

The exact implementation of the first two steps depends on the strategy
which will be followed in the third step. An idea would be to adapt the
approach of Example 9.3, Figure 9.5, to determine whether a word is of the
form ss. Thus comparing for example the first and the second subword and
if they are found to be equal then compare (one of) them with the third
subword.
Here we propose to compare the three subwords in one stroke
and because of space considerations we first give the transition diagram:

a/a, L

A/a, R

A/A, L

a/A, Ra/a, L
b/b, L

b/B, R
a/A, R

B/b, R
A/a, R

b/b, L

B/b, R

B/B, L

b/B, R

b/$, Ra/$, R

b/b, R
∆/∆, R

a/a, Ra/a, R
b/b, R
∆/∆, R

∆/∆, R

A/A, R
B/B, R

B/∆, R

b/∆, L

a/a, L A/A, L
b/b, L B/B, L

∆/∆, L

$/∆, R

∆/∆, R

∆/∆, S

∆/∆, S

A/A, R
B/B, R
∆/∆, R

a/∆, L

∆/∆, R

A/A, S
B/B, S

B/B, R
A/A, R

a/a, R
b/b, R

B/B, L
A/A, L
∆/∆, L

b/B, L
a/A, L

b/B, L
a/A, L

b/b, L
a/a, L
∆/∆, L

B/b, L
A/a, L

a/a, L
b/b, L

A/A, L
B/B, L

A/∆, R

— if the input is empty, we are done (accept);

3

— else, we first try to divide the word in one third vs two thirds by mark-
ing, for every symbol in the first part of the word (from left to right), two
symbols in the last part (from right to left). As a marking we use A for a
and B for b. Next we split the last part (consisting of capital letters) in half
in such a way that the last (third) subword becomes unmarked again;
— now we are ready for the last phase with a word of the form wxy with
w, y ∈ {a, b}+ and x ∈ {A,B}+ and |w| = |x| = |y|:
we move back to the beginning of the tape and begin the comparison:
remember and mark (as $) the first (non-blank) symbol, go to the right
and compare it with the first capital symbol; if they agree erase this capital
(replace it by ∆) and move on to the right to the first (small) symbol; again
compare and if it is the same as the original symbol erase it and move back
to the left of the input to the $; delete this and move right;
if the symbol then read is a ∆ we are done and can accept; else repeat the
above procedure (if a comparison is not successful, the machine crashes/stops
in hr).

9.7 The TM in Figure 9.22 when given an input string 1i repeatedly divides
i by 2 until exactly one 1 remains after which it accepts. Hence the input is
accepted if and only if i is a power of 2. Thus the TM accepts the language
{12n

| n ≥ 0} = {1, 11, 1111, 11111111, 116 , . . .}.

9.11 Let T be a TM accepting a language L. We modify T in such a way
that the resulting TM T ′ also accepts L and never stops unsuccessfully (the
reject state hr is not needed, neither explicitly nor implicitly).
Recall that T stops unsuccessfully if and only if either it scans a symbol in
a state for which combination it does not have an instruction or the head
falls off the left side of the tape.

First we consider the problem of the head falling off the tape. We use
symbols with a subscript L as an indication of their occurrence in the left-
most cell. We thus have a new symbol ∆L and new tape symbols aL for
every a ∈ Γ where Γ is the tape alphabet of T . We let T ′ begin its work
on any input x by first changing the ∆ in the leftmost cell into ∆L. Thus
from here (configuration (q0,∆Lx)) it behaves as T unless it sees a subscript
L. For these cases, instructions δ′(p, aL) = (q, bL, d) are provided whenever
δ(p, a) = (q, b, d) and d is either R or S (the head moves to the right or
stays); for instructions δ(p, a) = (q, b, L) (when the head would move to the
left and fall off), we do nothing. Note that T ′ (constructed sofar would crash
by lack of instructions rather than falling off the tape. The set of accepted
words has not been changed.

4

Finally, we add a new state sink together with instructions δ′(sink, a) =
(sink, a, S) for all symbols a ∈ Γ∪ ΓL ∪ {∆}. Thus once the TM is in sink

it will remain (loop) there forever scanning the same cell with the same
symbol. For every combination (p, a) of a state p and a symbol a for which
there is no instruction (thus in particular for p = hr which is now considered
an ordinary state), we set δ′(p, a) = (sink, a, S). Hence whenever T would
crash because of lack of an instruction (or fall off the tape), the modification
now takes care that it moves to sink (and only then). Note that adding
these instructions does not make the TM non-deterministic nor affects the
set of words accepted.

9.12 As mentioned in the text (page 336), during (or after) a computation
of a TM there is no (general, effective) procedure to determine the position
of the rightmost cell containing a non-blank symbol. Simply walking to the
right does not give insight in whether the last non-blank has been seen or
whether there might still be another one. As we discuss now also more sub-
tle methods will not work.
a Assume we have a module TM T0 which when started on a tape will move
the head to the rightmost position on the tape containg a non-blank (if the
tape is completely blank it moves the head to cell 0) and then stop.
First consider a TM T1 which halts (for some input) in the accepting con-
figuration (ha,∆1). Then T0 begins its work and after some finite time it
halts with its head on the 1 in cell 1 with the tape otherwise empty. We now
make a TM T2 which works as follows. It erases its input, moves back to the
beginning of the tape and writes 1 in cell 1, then it invokes T0 but with the
following modification: it marks cell 2 with the endmarker # and whenever
is read it is treated as ∆ and the marker is shifted one cell to the right.
In this way there will always be exactly one # on the tape directly after the
rightmost cell ever visited by T0. Once (the thus) modified version of T0 has
finished its work we stop in the configuration (ha,∆1∆n#) with cell n + 1
the rightmost cell ever visited by T0.
Now we ask T0 to find the rightmost non-blank cell left by T2. Since it is
deterministic it will proceed as for T1 beginning from (ha,∆1) and will never
visit the cell with #. Thus T0 does not work correctly for T2.

b If a TM is modified in such a way that it always marks (as described
above) the rightmost edge of the portion of the tape it has visited, then
once it has finished its computation, a brute force method of simply walking
to the right would work: start from the leftmost cell and walk to the right
until that (unique) marker and then go back to the left and the rightmost
cell left non-blank during that computation will be found.

5

9.13 We construct a (module) Turing machine Insert(σ) with input alpha-
bet Σ which places the symbol σ ∈ Σ ∪ {∆} at the current position of the
tape head and shifts the tape contents which follows one position to the
right.
More precisely: (p, yz) ⊢∗ (q, yσz) where p is the initial state of Insert(σ)
and q its terminating state (ha if you like); z does not contain ∆’s.
The TM achieves this by writing a ∆ at the current position if that is not
blank (if it is, we know that z = Λ and the TM can write σ rightaway and
stop); the TM moves to the right, all the time replacing the next symbol by
the previous one. When it sees ∆ it writes the final symbol, moves back to
the left until it sees the blank cell left at the original beginning of z where
it writes σ and stops.
Below follows a detailed transition diagram for the case that the input al-
phabet of the Turing machine consists of a, b only (and so σ ∈ {a, b}∪{∆}).
Generalizing this to arbitrary alphabets should be easy.

a/b, R

a/a, R

a/a, L
b/b, L

p
b/a, R

b/b, R

∆/σ, S

∆/σ, S

a/∆, R

∆/b, Lb/∆, R

∆/a, L

q

9.15

c We construct a TM that computes the square of any given positive integer
(in unary), thus we aim at (q0,∆1n) ⊢∗ (ha,∆1n2

).
Basically given an input string of n 1’s we have to produce another n − 1
strings of n 1’s. Therefore we will use the modules Copy and Delete, the
latter to remove the redundant ∆’s inbetween the copied strings.
In order to distinguish the first ∆ in cell 0 from other occurrences of ∆
we change it till the end of the computation in $. This implies that we
use a slightly extended version of the module Copy as described in Example
9.7 (Figure 9.12). The modified version used here treats $ as a ∆, that is
(p,∆x) ⊢∗ (q,∆x∆x) and also (p, $x) ⊢∗ (q, $x∆x) with p the initial state of

6

Copy and q its final state. Also this modified version of Copy does not visit
any other cells than those used in the final configuration. (Give a transition
diagram for this Copy.)
The module Delete is given in Example 9.8 (Figure 9.13); (p, yaz) ⊢∗ (q, yz)
where z doesn’t contain blanks and is followed by a blank, a may be a blank,
and p and q are the initial and final state. This Turing machine only visits
the cells occupied by az∆, the last part of its input.
Our TM works as follows:
If the TM is given 0 as input, it can stop immediately (after changing $ back
into ∆), because 02 = 0.
If the input is not empty, the first 1 is marked (as a) and the TM looks for
a second 1. If there is none it changes the a back into 1 and the $ into ∆
and it stops, because 12 = 1.
If the TM discovers a second 1, then it proceeds as follows:
the 1 is marked, the head moves back to $ and Copy copies the current
string. The head moves to the right to the beginning of the fresh copy and
looks for an unmarked 1. If there is one, it is marked, the head moves back
to the beginning of this block and it is copied. This procedure is repeated
until there is no 1 left in the last copied block, after which the head moves
to the left, on the way deleting the ∆’s and changing the a’s into 1’s until $
is reached. This is changed into ∆ and the machine stops.
The transition diagram is given below.

∆/∆, L

1/1, R
a/a, R

Delete

Copy

a/a, R

∆/$, R 1/a, R 1/a, L

a/a, L

∆
$

a/1, R

∆/∆, R

$/∆, S

1/1, L
a/1, L

$/∆, S

∆/∆, L∆/∆, L 1/a, L

∆

∆/∆, R
$/$, R

d Modify (and take care of a proper final configuration) the TM in Figure
9.22 (see Exercise 9.7).

7

9.16 Note that in Figure 9.23, the big arrow labelled ∆/∆, R has two
arrowheads; it should however point only to the left.
Compare the TM shown with the solution to Exercise 9.15(i)!

9.17 We have two Turing machines T1 and T2, computing the functions f1

and f2, respectively. We assume that both functions have a single argument.
For questions a and b we first describe a composite Turingmachine to com-
pute f1(x) and f2(x) using T1 and T2 given some input x.
Copy the input x and insert a marker $: (q0,∆x) ⊢∗ (q01,∆x$∆x);
Compute f1 using T1: (q01,∆x$∆x) ⊢∗ (h1,∆x$∆f1(x));
Interchange x and f1(x): (h,∆x$∆f1(x)) ⊢∗ (q02,∆f1(x)$∆x);
Compute f2 using T2: (q02,∆f1(x)$∆x) ⊢∗ (h2,∆f1(x)$∆f2(x)).
Delete the marker, go to the beginning of the tape and stop:
(h2,∆f1(x)$∆f2(x)) ⊢∗ (ha,∆f1(x)∆f2(x)).
Thus, apart from T1 and T2 we need TM modules to copy (see Example
9.7), insert (Exercise 9.13), delete (Example 9.8), and to swap two strings
(design your own TM module for this task).

a Now we can add f1(x) and f2(x), assuming that we have a module to add
two natural numbers (represented in unary, binary, ...):
(q+,∆f1(x)∆f2(x)) ⊢∗ (ha,∆f1(x) + f2(x)).

b Compare f1(x) and f2(x):
(qmin,∆f1(x)∆f2(x)) ⊢∗ (ha,∆min(f1(x), f2(x))).
This TM should still be defined!

c The function f1 ◦ f2 is defined by f1 ◦ f2(x) = f1(f2(x)) for all x in the
domain of f2. It is undefined if f2(x) is not in the domain of f1. We assume
that the tape alphabet of T2 is contained in the input alphabet of T1.
To compute f1 ◦ f2 given some input x, first compute f2(x) using T2:
(q02,∆x) ⊢∗ (h2,∆f2(x)) if f2(x) is defined (otherwise, the TM T2 crashes
or doesn’t stop at all);
then apply T1 to f2(x) with h2 = q01: (q01,∆f2(x)) ⊢∗ (ha,∆f1(f2(x))) if
f1(f2(x)) is defined.

9.18 Let us assume that we are given two Turing machines T2 and T2plus1:
T2 computes the function f2(1

k) = 12k, for all k ≥ 0, and
T2plus1 computes the function f2+1(1

k) = 12k+1, for all k ≥ 0. We can now
construct a TM which when given an arbitrary binary string (which may
start with leading 0’s) computes in unary the number it represents:
Going from left to right through the input string we compute after the blank
following the input (starting from 0 = ∆) in unary 2 times the current value

8

for each 0 and 2 times the current value +1 for each 1 we encounter. Once
the whole input has been processed (and marked) in this way, we delete the
∆ between marked input and result and then moving to the left we delete
all x’s and stop with the head on the blank in cell 0.
See the transition diagram.

0/0, R
1/1, R

∆
T 2

T 2plus1
∆

∆/∆, L 1/1, L
0/0, L

x/x, R

0/x, R

1/x, R

∆/∆, S

x

1/1, L

1/1, R
0/0, R

Delete

Delete
∆

9.19 We assume that we already have a Turing machine T+1 which when
given any natural number n in binary representation bin(n) (which is either
0 or starts with a 1) computes the binary representation of n + 1:
(q0,∆0) ⊢∗ (ha,∆1) and (q0,∆bin(n)) ⊢∗ (ha,∆bin(n + 1)) for all n ≥ 1.
A Turingmachine that converts unary into binary could now work as follows:
Input 1k;
if k = 0 (empty tape), write 0 (in cell 1), move to cell 0 and stop;
otherwise (there is at least one 1), move to the end of the input string,
change the last 1 into a marker x, move two cells to the right, write a 1 and
go back to the right end of the remaining input;
repeat, until no input 1 remains, for each rightmost 1 in the remaining in-
put: replace 1 by x, move to the right until the first ∆, apply T+1, go back
to the right end of the remaining input;
if all input has been thus dealt with, change the tape contents from ∆xk∆bin(k)
into ∆bin(k) and stop with the head on cell 0.
Draw the transition diagram.

9.21 In Example 9.3, Figure 9.5, a TM has been given for the language
L = {ss | s ∈ {a, b}∗}. We now sketch a TM that accepts L, this time
without using any additional tape symbols (Γ = Σ):

9

Given is an input word x ∈ {a, b}∗.
If x = Λ (the tape is empty) we can accept immediately. Thus from here
we assume that x = c1 . . . ck with ci ∈ {a, b} and k ≥ 1.
First it is checked that x is of even length:
insert an extra blank in cell 1: (p,∆x) ⊢∗ (q,∆∆x);
move c1 one cell to the left and ck one cell to the right; repeat this procedure
for c2 . . . ck−1 until either it turns out that k is odd (no symbol found to
move to the right) in which case x is rejected; or we end with tape contents
∆c1 . . . ck/2∆∆c(k/2)+1 . . . ck.
Next compare the two halves of x symbol by symbol more or less as before,
but rather than using uppercase letters as in Example 9.3 we replace symbols
that have been dealt with by ∆. Before each pass we have to check however
whether or not the symbols to be compared are the last symbols. This to
avoid that, in the next pass, the head falls off when we move to the left in
search for a nonblank symbol.

9.29 We are given the transition table of an NTM (draw the transition
diagram if you like). Assume that it begins a computation with a blank
tape. Then first (q0,∆) ⊢ (q1,∆∆) and next there is a choice:
to write 0 or 1, move to the right, and continue in state q1:
(q1,∆0∆) or (q1,∆1∆);
or to leave ∆ as it is, move to the left, and change to state q2.
Thus, unless the NTM moves forever to the right in state q1 while writing 0’s
and 1’s, it reaches the state q2 after having carried out some finite number
n of instructions and having written a word w ∈ {0, 1}n, and then moves to
the left (deterministically):
(q1,∆∆) ⊢n (q1,∆w∆) ⊢n+1 (q2,∆w∆) ⊢ (ha,∆w∆).
Thus when started with a blank tape, this NTM can have any binary string
as output (or may never stop). The NTM crashes after its first step when
started with a non-empty input x: (q0,∆x) ⊢ (q1,∆x) 6⊢.

9.30 G is the NTM from exercise 9.29 with (q0,∆) ⊢∗ (ha,∆w) where w
can be any string over {0, 1}.
Copy is the TM from Example 9.7 (Figure 9.12) with (q0,∆x) ⊢∗ (ha,∆x∆x)
for all words x ∈ {0, 1}∗.
Equal is a TM such that, for all x, y ∈ {0, 1}∗, (q0,∆x∆y) ⊢∗ (ha, vcw) for
some v, c, w if and only if x = y.
Delete is the TM from Example 9.8 (Figure 9.13) with (q0, yaz) ⊢∗ (ha, yz)
where z doesn’t contain blanks and a may be a blank.
The NTM in Figure 9.25 when given an input word u ∈ {0, 1}∗, first goes to

10

the right end of the input, then applies the NTM G starting from the first
blank right from the input. Thus (nondeterministically) the tape contents
are changed into ∆u∆w∆ . . . with w ∈ {0, 1}∗ an arbitrary word; the head
is on the ∆ inbetween u and w.
Next w is copied and the ∆ inbetween the copies is deleted.
The head moves to cell 0 and with Equal it is tested whether u = ww.
Consequently, the language accepted by this NTM is {ww | w ∈ {0, 1}∗}.

9.31 Hints to construct an NTM for {1n | n = k2 for some k ≥ 0}:
Use the NTM G from exercise 9.29, the TM Square from exercise 9.15(c),
and the TM Equal as in exercise 9.30.
As in the previous exercise, generate an arbitrary string from the language
given, compare it with the input and accept if and only if they are equal.
Thus: walk to the right end of the input word x ∈ {1}∗, generate with G
an arbitrary string w, apply Square which crashes when it encounters a 0.
If the NTM has not crashed, then w = 1k for some k ≥ 0 and we now have
on the tape ∆x∆1k2

. Finally, x and 1k2

are compared.

9.32 An NTM for {1n | n is a composite integer ≥ 4} has to check whether
the length of a given input from {1}∗ is at least 4 and not prime.
We let this NTM first generate non-deterministically a string of the correct
form, after which it compares this string with the input.

1/1, R

∆∆/∆, R
G1

∆/∆, R

1/1, R

∆

1/1, L

G1

Equal
∆

Product
∆

∆/∆, L

1/1, L

The following modules are used (if not yet available, construct them!):
an NTM G1 with (q0,∆ ⊢∗ (ha,∆1k) with k ≥ 2 and which doesn’t accept
any non-empty input;
a TM Product with (q0,∆1k∆1j ⊢∗ (ha,∆1k.j);
the TM Equal as in exercise 9.30.
The NTM walks to the right end of the input word x ∈ {1}∗, generates with
G1 an arbitrary string 1k with k ≥ 2; moves again to the right and then
calls G1 again to obtain a string 1j with j ≥ 2; it goes back to the left to

11

the ∆ preceding 1k and calls Product. We now have on the tape ∆x∆1k.j.
Finally, x and 1k.j are compared.

9.33 Let L ⊆ {0, 1}∗ be a language accepted by a Turing machine T .
a To accept the set of prefixes of L, an NTM Tpref could begin by mov-
ing past the input x, call the NTM G from exercise 9.29 and generate an
arbitrary word from {0, 1}∗ and concatenate this to x by deleting the ∆
inbetween x and w. It then moves back to cell 0 and calls T which will lead
to acceptance if and only if xw ∈ L, thus if and only if x is a prefix of a
word from L.
b As in a, but now the word w generated by G has to be moved to the left
of x: we need a module (q0,∆x∆w) ⊢∗ (ha,∆wx). Then call T .
c First as in a, concatenate x with an arbitrary w leading to xw; then, as
in b, concatenate an arbitrary v to xw which yields vxw. Then call T .

9.38 We are asked to describe a TM that enumerates the palindromes over
{0, 1} in canonical order: x ≺ y iff |x| < |y| or |x| = |y| and x comes
alphabetically before y.
We will use the fact that a palindrome v preceeds a palindrome w if and
only if the first half of v (including its middle symbol if it is of odd length)
preceeds the first half of w.
First we describe a module TM which when given a palindrome as input
produces the next (in the canonical order) palindrome as output:
(q0,∆xn) ⊢∗ (ha,∆xn∆xn+1).

— use the module Copy to copy the input: (q0,∆xn) ⊢∗ (q1,∆xn∆xn)
— examine the copy:

if xn contains no 0’s, then change the copy to 0|xn|+1, which is a palindrome;
otherwise find the middle of the copy and change from there — going from
right to left through the string — all 1’s into 0’s, until a 0 is found which is
changed into 1; then modify the second half accordingly (palindrome); thus
the copy of xn = y01j0yr has been changed into y10j1yr (check that this is
indeed xn+1!);

— go back to the ∆ just before the thus modified copy and stop.
Clearly we can now make a TM enumerating all palindromes in canonical
order by first taking care that q0 only occurs in the first step of a computation
as just described and then changing ha into q0. Hence when started on the
empty palindrome, the TM will never stop and only be busy creating on the
tape a list of all palindromes in canonical order.

Note that we could also have given a module TM which replaces the input xn

itself, rather than a copy, by xn+1, which then would have led to a TM which

12

shows all palindromes one after the other (in time), rather than behind one
another.

versie 06 januari 2009

13

