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8.1 Show using the pumping lemma lemma, that the given languages are
not context-free.
a. L = {aibjck | 0 ≤ i < j < k}.
Suppose L is a CFL. Then L satisfies the pumping lemma (Theorem 8.1a).
Let n be the constant of that lemma. Consider u = anbn+1cn+2 ∈ L. Then
|u| ≥ n and thus there exist v, w, x, y, z such that u = vwxyz with |wy| > 0,
|wxy| ≤ n, and vwixyiz ∈ L for every i ≥ 0. We distinguish two cases:
1. wy contains at least one a. Then, since |wxy| ≤ n, there are no c’s in
wy. Consequently, vw2xy2z contains at least n+1 a’s and exactly n+2 c’s,
which implies that vw2xy2z is not in L. A contradiction.
2. wy does not contain any a. Then it must contain a b or a c. In this case
vw0xy0z contains n a’s and either at most n b’s or at most n + 1 c’s. Thus
vw0xy0z 6∈ L, again a contradiction.
Since we get in all (both) cases a contradiction we conclude that the pumping
lemma is not satisfied and hence L is not context-free.
b. L = {x ∈ {a, b}∗ | nb(x) = na(x)2}.
Examples of words in L are: aabbbb, babbba, abbbabbbabbb.
Suppose L is a CFL. Then L satisfies the pumping lemma (Theorem 8.1a).
Let n be the constant of that lemma. Consider u = anbn2

∈ L. Then
|u| ≥ n and thus there exist v, w, x, y, z such that u = vwxyz with |wy| > 0,
|wxy| ≤ n, and vwixyiz ∈ L for every i ≥ 0.
Let na(wy) = p and nb(wy) = q. Then for each i ≥ 0 we have na(vwixyiz) =
na(u)+(i−1)p = n+(i−1)p and nb(vwixyiz) = nb(u)+(i−1)q = n2+(i−1)q.
Since, by our assumption vwixyiz ∈ L for every i ≥ 0, it must be the case
that (n+(i−1)p)2 = n2+(i−1)q for every i ≥ 0. This however is impossible
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as can be seen as follows. Since |wy| > 0, at least one of p and q is not 0.
If p = 0 and q 6= 0, then n2 = n2 + (i − 1)q for every i ≥ 0, which clearly is
not true if i ≥ 2.
If p 6= 0 and q = 0, then (n + (i − 1)p)2 = n2 for every i ≥ 0, which clearly
is not true if i ≥ 2.
If p 6= 0 and q 6= 0, then we have (for i = 2) that (n + p)2 = n2 + q which
implies that q = 2np + p2, and (for i = 3) that (n + 2p)2 = n2 + 2q which
implies that q = 2np + 2p2. Hence p = 0 should hold, a contradiction.
We conclude that the pumping lemma is not satisfied and that, consequently,
L is not context-free.
e. L = {anbmanbn+m | m,n ≥ 0}.
Suppose L is a CFL. Then L satisfies the pumping lemma (Theorem 8.1a).
Let n be the constant of that lemma. Consider u = anb2nanb3n. Thus
u ∈ L and |u| ≥ n. Hence there exist v, w, x, y, z such that u = vwxyz with
|wy| > 0, |wxy| ≤ n, and vwixyiz ∈ L for every i ≥ 0.
Since |wxy| ≤ n it is immediately clear that wxy cannot contain more than
two distinct symbols.
Suppose first that wxy consists only of a’s or only of b’s. If wxy falls within
the first group of a’s, then vw2xy2z = an+kb2nanb3n for some k ≥ 1, and
this word is not from L. We can use the same argument when wxy falls
within the first group of b’s, the second group of a’s or the the second group
of b’s.
Secondly, if wxy is a subword of anb2n, then vw2xy2z = aksblanb3n with
na(s) > n − k or nb(s) > 2n − l, which is not in L. We can use the same
argument when wxy is a subword of b2nan or of anb3n.
Thus all cases lead to a contradiction. So L is not a CFL.

8.5 Is the given language context-free? Prove your answer.
a. L = {anbmambn | n,m ≥ 0} is a CFL; give a grammar.
b. L = {xayb | x, y ∈ {a, b}∗ and |x| = |y|} is a CFL; give a grammar.
c. L = {xcx | x ∈ {a, b}∗} is not a CFL; proof similar as in Example 8.2.
d. L = {xyx | x, y ∈ {a, b}∗ and |x| ≥ 1} is not a CFL;
Assume that L is context-free. Then it satisfies the pumping lemma. Let n
be the constant of that lemma. Now consider u = xyx with x = anbn and
y = Λ. Thus u = anbnanbn. There must exist words p, q, r, s, t such that
u = pqrst such that |qs| > 0, |qrs| ≤ n, and pqirsit ∈ L for every i ≥ 0. We
distinguish two cases:
1. qs consists only of a’s from the first group of a’s in u or it consists only
of b’s from the second group of b’s. Then pq2rs2t is either an+jbnanbn or
anbnanbn+j for some j ≥ 1, which are both not in L. A contradiction.
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2. qs contains a b from the first group of b’s in u or it contains an a from the
second group of a’s in u. Then pq0rs0t is either akblambn or anbkalbm with
k,m ≥ 1 and l < n. Neither of these words is in L, again a contradiction.
Consequently, we always end up with a contradiction and so L is not a CFL.

The exercises e, f, and g can be solved efficiently using the material from
Chapter 7 (see below). When (deterministic) pushdown automata have not
yet been considered, one should first see that each of the given languages is
context-free and next try to find a CFG for that language!
e. L = {x ∈ {a, b}∗ | na(x) < nb(x) < 2na(x)} is a CFL; see Exercise 7.37
b where a PDA is to be given for this language.
f. L = {x ∈ {a, b}∗ | na(x) = 10nb(x)} is a CFL; give a PDA.
g. L is the set of non-balanced strings of parentheses ( and ). This language
is a CFL, which can be proved by giving a DPDA for its complement the
language over {(, )}∗ consisting of all balanced strings. Note that the family
of deterministic context-free languages is closed under complementation.

8.6 Generalizing Theorem 5.3 to context-free languages yields:
If L is an infinite context-free language, then there are strings v, w, x, y,
and z such that |wy| > 0 and vwixyiz ∈ L, for every i ≥ 0.
Generalizing Theorem 5.4 to context-free languages yields:
If L is an infinite context-free language, then the set of lengthhs of words in
L contains an infinite arithmetic progression.
Similar to the way that Theorems 5.3 and 5.4 follow from the pumping
lemma for regular languages, the two statements above follow from (are
weaker forms of) the pumping lemma for context-free languages.
a. Let L = {x ∈ {a, b, c}∗ | na(x) = nb(x) = nc(x)}. Then using the
pumping lemma L can be shown to be not context-free (see Example 8.1).
The above generalization of Theorem 5.3 cannot be successfully applied:
there is no way to guarantee that the string wy doesn’t have an equal number
of a’s, b’s and c’s (which allows pumping without leaving the language).
b. Let L = {aibici | i ≥ 0}. Then the generalization of Theorem 5.3 can
be used to prove that this language is not a CFL, but the generalization
of Theorem 5.4 cannot (the length set does contain an infinite arithmetic
progression).
c. Let L = {an2

| n ≥ 0}. This language is not a CFL, which can be proved
using the generalization of Theorem 5.4 (see also exercise 5.27 h).

8.7 The PDA M constructed in the proof of Theorem 8.4 is a DPDA for
L1 ∩ L2 whenever the PDA M1 accepting L1 is deterministic (a DPDA).
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Thus, it follows that the family of DCFLs is also closed under intersection
with regular languages.

8.8 Show that the given languages are CFLs, but their complements not.
a. L = {aibjck | i ≥ j ∨ i ≥ k}.
We have L = L1 ∪ L2 with L1 = {aibjck | i ≥ j} and L2 = {aibjck | i ≥ k}.
It is easy to see that these languages are both context-free.
L1 is generated by the CFG G1 with axiom S1 and set of productions P1

consisting of S1 → AC, A → aAb | aA |Λ, C → cCΛ;
and L2 is generated by the CFG G2 with axiom S2 and set of productions
P2 consisting of S2 → aS2c | aS2 |B, B → bB |Λ.
Then L is generated by the grammar with axiom S and set of productions
{S → S1, S → S2} ∪ P1 ∪ P2.
The complement of L is K = K1∪K2 with K1 = {a, b, c}∗{ba, ca, cb}{a, b, c}∗

consisting of all words over {a, b, c} in which the order a’s before b’s before
c’s is not respected and K2 = {aibjck | i < j ∧ i < k} consisting of all
words over {a, b, c} in which the symbols appear in the right order but in
wrong numbers. Now assume that K is a CFL. Then by Theorem 8.4, also
K2 = K ∩ {a}∗{b}∗{c}∗ is a CFL. Hence it satisfies the pumping lemma.
Let n be the constant of that lemma. Consider the word u = anbn+1cn+1.
Since u ∈ K2 and |u| ≥ n, there must exist words v, w, x, y, and z such that
u = vwxyz with |wy| > 0, |wxy| ≤ n, and vwmxymz ∈ K for all m ≥ 0.
If wy contains at least one a, it cannot contain a c, because |wxy| < n + 1.
Consequently vw2xy2z has at least as many a’s as c’s and is not in K2.
Thus wy consists solely of b’s and c’s. But this implies that in vw0xy0z
the number of b’s or the number of c’s is at most n and so vw0xy0z 6∈ K,
a contradiction. We conclude that K2 doesn’t satisfy the pumping lemma
and consequently, is not context-free. Moreover, our assumption that K is
context-free was wrong.
(Try to apply the pumping lemma directly to K instead of K2.)
b. Similar to a. L = {aibjck | i 6= j ∨ i 6= k} = {aibjck | i 6= j} ∪
{aibjck | i 6= k} is a union of two (easy) CFLs. The complement of L is
K = K1 ∪K2 with K1 = {a, b, c}∗{ba, ca, cb}{a, b, c}∗ consisting of all words
over {a, b, c} in which the order a’s before b’s before c’s is not respected and
K2 = {aibjck | i = j = k} consisting of all words over {a, b, c} in which the
symbols appear in the right order but in wrong numbers. Now assume that
K is a CFL. Then by Theorem 8.4, also K2 = K ∩ {a}∗{b}∗{c}∗ is a CFL.
In Example 8.1 however it has been shown (using the pumping lemma) that
K2 is not a CFL. Thus the assumption that K is a CFL is wrong.
c. L = {x ∈ {a, b}∗ |6 ∃w. x = ww}. Its complement is not context-free as has
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been shown in Example 8.2. Hence we are left with the task of proving that
L is a CFL. Clearly a word x is not of the form if its length is odd. A word of
even length is not of the form ww if and only if it “makes a mistake”, which
means that it is of the form uavwbz or ubvwaz with |u| = |w| and |v| = |z|.
Thus we have L = ({a, b}{a, b})∗{a, b} ∪ {uaybz, ubyaz | |y| = |u| + |z|}.
Now it is easy to give a grammar for L:
S → S1 |S2,
S1 → aaS1 | abS1 | baS1 | bbS1 | a | b, for words of odd length
S2 → AB |BA,
A → aAa | aAb | bAa | bAb | a for words uaw with |u| = |w|,
B → aBa | aBb | bBa | bBb | b for words vbz with |v| = |z|.

8.9 Prove, by using Ogden’s lemma, that the following languages are not
context-free.
a. L = {aibi+kak | i, k ≥ 0 and i 6= k}
Assume that L is a CFL. Then it satisfies Ogden’s lemma (Theorem 8.2).
Let n ≥ 1 be the integer in that lemma. We now have to find a word u ∈ L
of length at least n that when pumped using the distinguished postions we
have chosen will (always) yield a word not in L, thus proving that Ogden’s
lemma does not hold for L. A contradiction, which implies that L is not a
CFL.
Let u = anb2n+n!an+n! which is in L and certainly longer than n. We
designate the first n positions in u as distinguished. According to Ogden,
there exist v, w, x, y, z such that u = vwxyz, both the string wy and the
string x contain at least one a from the first group of a’s, and for all m ≥ 0,
the word vwmxymz is in L.
Since x contains at least one distinguished position, we have that w consists
only of a’s from the first group. If y would contain both an a and a b, then
y = y1ay2by3 or y = y1by2ay3 and then y2 = y1ay2by3y1ay2by3 or y2 =
y1by2ay3y1by2ay3. Then vw2xy2z 6∈ L because it has two b’s separated by at
least an a. Hence y consists only of a’s or only of b’s, that is y ∈ {a}∗∪{b}∗.
If y ∈ {a}∗, then pumping w and y would involve only a’s implying that the
relationship between the number of a’s and the number of b’s would be lost.
Thus y ∈ {b}∗ and we now know that it must be the case that w = ap

and y = bq for some integers p ≥ 1 and q ≥ 0. If p 6= q, then vw0xy0z =
an−pb2n+n!−qan+n! 6∈ L. Consequently, p = q ≥ 1.
Now consider m = 1 + n!/p. Thus m is an integer and mp = p + n!. Then
vwmxymz = an−pampbmpb2n+n!−pan+n! = an+n!b2n+2(n!)an+n! which is not
in L. We conclude that there is no possibility to pump u correctly, and L is
not a CFL.
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b. L = {aibiajbj | i, j ≥ 0 and i 6= j}
Assume that L is a CFL. Then it satisfies Ogden’s lemma (Theorem 8.2).
Let n ≥ 1 be the integer in that lemma. Let u = anbnan+n!bn+n! which is
in L and is certainly longer than n. We designate the first n positions in
u as distinguished. According to Ogden, there exist v, w, x, y, z such that
u = vwxyz, both the string wy and the string x contain at least one a from
the first group of a’s, and for all m ≥ 0, the word vwmxymz is in L.
Since x contains at least one distinguished position, we have that w consists
only of a’s from the first group. If y would contain both an a and a b, then
y = y1ay2by3 or y = y1by2ay3 and then vw3xy3z 6∈ L because it has at
least three groups of b’s. Hence y consists only of a’s or only of b’s, that is
y ∈ {a}∗ ∪ {b}∗.
If y ∈ {a}∗, then pumping w and y would involve only a’s implying that the
relationship between the number of a’s and the number of b’s would be lost.
Thus y ∈ {b}∗ and if y would be part of the second group of b’s, then
pumping w and y would violate the relationships between the first a’s and
b’s and between the second a’s and b’s. Thus y belongs to the first group
of b’s. We now know that vwxy = anbk for some 0 ≤ k ≤ n and w = ap

and y = bq for some integers p ≥ 1 and q ≥ 0. If p 6= q, then vw0xy0z =
an−pbn−qan+n!bn+n! 6∈ L. Consequently, p = q ≥ 1.
Now consider m = 1 + n!/p. Thus m is an integer and mp = p + n!. Then
vwmxymz = an−pampbmpbn−pan+n!bn+n! = an+n!bn+n!an+n!bn+n! which is
not in L. We conclude that there is no possibility to pump u correctly, and
L is not a CFL.
c. L = {aibjai | i, j ≥ 0 and i 6= j}
Assume that L is a CFL. Then it satisfies Ogden’s lemma (Theorem 8.2).
Let n ≥ 1 be the integer in that lemma. Let u = anbn+n!an which is in
L and is certainly longer than n. We designate the first n positions in
u as distinguished. According to Ogden, there exist v, w, x, y, z such that
u = vwxyz, both the string wy and the string x contain at least one a from
the first group of a’s, and for all m ≥ 0, the word vwmxymz is in L.
More or less as before, we can now argue that w = ap belongs to the first
group of a’s and y = ap belongs to the second group of a’s. Next let
m = 1 + n!/p. Thus m is an integer and mp = p + n!. Then vwmxymz =
an−pampbn+n!ampan−p = an+n!bn+n!an+n! which is not in L. We conclude
that there is no possibility to pump u correctly, and L is not a CFL.

8.10

a. Let L be a CFL and F a finite language. Then L − F is a CFL:
Let Σ be an alphabet such that L,F ⊆ Σ∗.
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F is finite implies F is regular which implies that its complement Σ∗ − F
is regular (Theorem 3.4, page 110). Using Theorem 8.4, we conclude that
L ∩ (Σ∗ − F ) = L − F is a CFL.
b. L is not a CFL and F is a finite language. Then L − F is not a CFL,
which we prove by contradiction. Assume that L − F is a CFL.
Note that L∩F ⊆ F is finite and hence a CFL. Since a union of two CFLs is
a CFL (Theorem 6.1), it follows that (L−F )∪ (L∩F ) = L is context-free,
a contradiction. We conclude that L − F is not a CFL.
c. L is not a CFL and F is a finite language. Then L ∪ F is not a CFL,
which we prove by contradiction. Assume that L ∪ F is a CFL.
Note that F−L ⊆ F is finite. It then follows from a that (L∪F )−(F−L) = L
is context-free, a contradiction. We conclude that L − F is not a CFL.

8.11 Consider once more exercise 8.10, now with every occurrence of “finite”
replaced by “regular”.
a. Let L be a CFL and F a regular language. Then L− F is a CFL, which
can be proved as in 8.10a.
b. L is not a CFL and F is a regular language. Then L − F may or may
not be a CFL. As seen above, if F is a finite language, then L − F is not
context-free. On the other hand, if we let F = Σ∗ where Σ is an alphabet
such that L ⊆ Σ∗, then Then L − F = ∅ which is a CFL.
c. L is not a CFL and F is a regular language. Similar to b, L ∪ F may or
may not be CFL. As seen above, if F is a finite language, then L∪F is not
context-free. On the other hand, if we let F = Σ∗ where Σ is an alphabet
such that L ⊆ Σ∗, then L ∪ F = F = Σ∗ is a CFL.

8.12 Each of the three statements in exercise 8.10 is true when “CFL” is
replaced by “DCFL”:
a. as before, since the family of DCFLs is also closed under intersection (see
exercise 8.7).
b. If L − F is a DCFL, then the complement K of L − F is also a DCFL
and thus also L = K ∩F , because the family of DCFLs is also closed under
intersection (see exercise 8.7). Hence, if L is not a DCFL, then also L − F
is not a DCFL.
c. as 8.10a, now using 8.12a.
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